Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




AI-Based Approach Reduces False Positives in Mammography

By HospiMedica International staff writers
Posted on 18 Oct 2018
A team of researchers from the University of Pittsburgh (Pittsburgh, PA, USA) have developed an artificial intelligence (AI) approach based on deep learning convolutional neural network (CNN) that could identify nuanced mammographic imaging features specific for recalled but benign (false-positive) mammograms and distinguish such mammograms from those identified as malignant or negative.

The researchers conducted a study to find out whether deep learning could be applied to analyze a large set of mammograms in order to distinguish images from women with a malignant diagnosis, images from women who were recalled and were later determined to have benign lesions (false recalls), and images from women determined to be breast cancer-free at the time of screening.

The researchers used a total of 14,860 images of 3,715 patients from two independent mammography datasets, Full-Field Digital Mammography Dataset (FFDM - 1,303 patients) and Digital Dataset of Screening Mammography (DDSM - 2,412 patients). More...
They built CNN models and used enhanced model training approaches to investigate six classification scenarios that would help distinguish images of benign, malignant, and recalled-benign mammograms. Upon combining the datasets from FFDM and DDSM, the area under the curve (AUC) to distinguish benign, malignant, and recalled-benign images ranged from 0.76 to 0.91. The higher the AUC, the better the performance, with a maximum of 1, according to Shandong Wu, PhD, assistant professor of radiology, biomedical informatics, bioengineering, intelligent systems, and clinical and translational science, and director of the Intelligent Computing for Clinical Imaging lab in the Department of Radiology at the University of Pittsburgh, Pennsylvania.

"We showed that there are imaging features unique to recalled-benign images that deep learning can identify and potentially help radiologists in making better decisions on whether a patient should be recalled or is more likely a false recall," said Wu. "Based on the consistent ability of our algorithm to discriminate all categories of mammography images, our findings indicate that there are indeed some distinguishing features/characteristics unique to images that are unnecessarily recalled. Our AI models can augment radiologists in reading these images and ultimately benefit patients by helping reduce unnecessary recalls."

Related Links:
University of Pittsburgh


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Digital Color Doppler Ultrasound System
MS22Plus
Surgical Headlight
IsoTorch
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.