We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




New AI Algorithm Enhances Polyp Detection in Colonoscopy Procedures

By HospiMedica International staff writers
Posted on 23 Nov 2018
Researchers at Shanghai Wision AI Co., Ltd. More...
(Shanghai, China), a developer of computer-aided diagnostic algorithms and systems to improve the accuracy and effectiveness of diagnostic imaging, have announced results of a study validating a novel machine-learning algorithm that improves detection of adenomatous polyps during colonoscopy. The AI algorithm is built on the same network architecture that is used to develop self-driving cars and is designed to enable “self-driving” in colonoscopy procedures.

The Wision AI algorithm was validated on large, prospectively developed datasets collected independently from the training dataset that were several-fold larger than the training dataset. This more rigorous validation approach utilized by Wision AI is meant to increase the performance of the algorithm in real-world clinical settings.

The algorithm was developed using 5,545 images (65.5% containing polyps and 34.5% without polyps) from the colonoscopy reports of 1,290 patients. Experienced endoscopists annotated the presence of polyps in all images used in the development dataset, and the algorithm was then validated on four independent datasets: two sets for image analysis (A and B) and two sets for video analysis (C and D). According to the study’s key findings, validation on dataset A, which included 27,113 images from patients undergoing colonoscopy at the Endoscopy Center of Sichuan Provincial People’s Hospital, found a per-image-sensitivity of 94.4% and a per-image-specificity of 95.9%. The per-image-sensitivity in a subset of 1,280 images with polyps that are typically hard to detect was 91.7%.

Validation on dataset B, based on a public database of 612 colonoscopy images acquired from the Hospital Clinic of Barcelona, found a per-image-sensitivity of 88.2%. The use of this dataset allowed for generalization of the validation data to a broader patient population. Validation on dataset C included a series of colonoscopy videos containing 138 polyps, found a per-image sensitivity of 91.6% among 60,914 frames of video, and a per-polyp sensitivity of 100%. Validation on dataset D, which contained 54 colonoscopy videos without any polyps, found a per-image-specificity of 95.4% among 1,072,483 frames. The total processing time for each image frame was 76.8 milliseconds, including preprocessing and displaying times before and after execution of the deep-learning algorithm. Implementation in a real-time system resulted in a processing rate of 30 frames per second with Nvidia Titan X GPUs.

Based on these findings, the researchers concluded that the automatic polyp-detection system based on deep learning has a high overall performance in both colonoscopy images and real-time videos.

“The results of this study demonstrate the power of our rigorous approach to developing deep-learning algorithms, which utilizes distinct datasets for training and validation and results in high levels of specificity and sensitivity that have the potential to improve diagnostic screening methods that are known to reduce disease risk, improve health outcomes and save lives,” said JingJia Liu, CEO at Wision AI.

Related Links:
Shanghai Wision AI


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Ultrasound Needle Guidance System
SonoSite L25
Pressure Guidewire
SavvyWire
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: A smartphone application displays a glucose concentration that was measured using the new sensor (Photo courtesy of Chuchu Chen and Yonghao Fu)

Wearable Device for Diabetics Could Replace Continuous Glucose Monitoring Systems

Monitoring blood glucose is essential for people with diabetes to prevent complications and maintain long-term health. Current continuous glucose monitoring systems require needles inserted under the skin,... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.