We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

Automated AI Reads Electronic Health Records

By HospiMedica International staff writers
Posted on 22 Sep 2021
Print article
Phe2vec identified dementia cases (purple dots) from a two million patient database (blue dots) (Photo courtesy of MSSM)
Phe2vec identified dementia cases (purple dots) from a two million patient database (blue dots) (Photo courtesy of MSSM)
A new study shows how an artificial intelligence (AI)-based algorithm can read electronic health record (EHR) data to identify certain diseases.

The Phe2vec algorithm, developed by researchers at the Icahn School of Medicine at Mount Sinai (MSSM; New York, NY, USA) and the University of Potsdam (Germany), uses unsupervised machine learning (ML) to derive conceptual relationships between EHR data and a host of known diseases. The algorithm relies on embedding previous algorithms, developed by other researchers (such as linguists), to study word networks in various languages.

To test its performance, Phe2vec attempted to identify the diagnoses of nearly two million patients whose data was stored in the MSSM EHR. Results showed that for nine out of ten diseases tested, the system was as effective as, or even slightly better than, the gold standard manual phenotyping process, correctly identifying diagnoses of dementia, multiple sclerosis, and sickle cell anemia, among others. The study was published on September 2, 2021, in Patterns.

“There continues to be an explosion in the amount and types of data electronically stored in a patient’s medical record. Disentangling this complex web of data can be highly burdensome,” said senior author Benjamin Glicksberg, PhD, of the MSSM Hasso Plattner Institute for Digital Health (HPIMS). “Phe2vec aims to contribute to the next generation of clinical systems that use machine learning to offer a more holistic way to examine disease complexity and to improve clinical practice and medical research.”

Currently, scientists rely on a system called the Phenotype Knowledgebase (PheKB) to mine medical records for new information. To study a disease, researchers first have to comb through reams of medical records looking for pieces of data, such as certain lab tests or prescriptions, which are uniquely associated with the disease. They then program an algorithm to search for patients who have those disease-specific pieces of data (the phenotype). Each time researchers want to study a new disease, they have to restart this process from scratch.

Related Links:

Icahn School of Medicine at Mount Sinai
University of Potsdam

Gold Member
12-Channel ECG
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Compact 14-Day Uninterrupted Holter ECG
LED Examination Light
LED 110

Print article


Critical Care

view channel
Image: Detecting heart diseases using AI and the ECG (Photo courtesy of 123RF)

AI Technology Boosts ECG Capabilities for Early Heart Disease Diagnosis

Cardiovascular diseases often remain undetected until a critical event like a heart attack or stroke occurs. Early identification is key to improving outcomes, but the absence of clear symptoms complicates... Read more

Surgical Techniques

view channel
Image: ROSA Shoulder is a groundbreaking robotic system for anatomic and reverse shoulder arthroplasty (Photo courtesy of Zimmer Biomet)

World's First Robotic Assistant for Shoulder Replacement Surgery Helps Perform Highly Complex Procedures

A key challenge in performing a shoulder replacement is accurate glenoid and humeral placement, which is a critical factor for post-operative function and long-term implant survival. Now, a groundbreaking... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.