We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Thermo Fisher Scientific - Direct Effect Media

Download Mobile App




AI-Based Tool Improves Diagnosis of Breast Cancer Tumors and Ability to Predict Risk of Recurrence

By HospiMedica International staff writers
Posted on 01 Oct 2021
Print article
Illustration
Illustration

Researchers have developed an artificial intelligence (AI)-based tool that improves the diagnosis of breast cancer tumors and the ability to predict the risk of recurrence.

The greater diagnostic precision enabled by the AI-based tool developed by researchers at the Karolinska Institutet (Stockholm, Sweden) can lead to more personalized treatment for the large group of breast cancer patients with intermediate risk tumors.

Every year, around two million women globally develop breast cancer. In the diagnostic procedure, tissue samples of the tumor are analyzed and graded by a pathologist and categorized by risk as low (grade 1), medium (grade 2) or high (grade 3). This helps the doctor determine the most suitable treatment for the patient. Hospitals have recently started to make limited use of molecular diagnostics to improve the precision of breast cancer risk assessment, but these methods are often costly and time-consuming.

In a study based on an extensive microscopic image bank of 2,800 tumors, researchers trained a new AI-based method for tissue analysis to recognize characteristics of high-resolution microscopic images from patients classified with grade 1 and grade 3 tumors. In an evaluation of the AI model, the researchers found that their AI-based method can further divide the patients with grade 2 tumors into two sub-groups, one high-risk and one low-risk that are clearly distinguishable in terms of the recurrence risk. The method is not yet ready for clinical application, but a regulatory approved product is under development. The researchers will now be further evaluating the method with the aim to have a product out on the market by 2022.

“Roughly half of breast cancer patients have a grade 2 tumor, which unfortunately gives no clear guidance on how the patient is to be treated,” said the study’s first author Yinxi Wang, doctoral student at the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet. “Consequently, some of the patients are over-treated with chemotherapy while others risk being under-treated. It’s this problem that we’ve tried to resolve.”

“One big advantage of the method is that it’s cost-effective and fast, since it’s based on microscope images of dyed tissue samples, which is already part of hospital procedure,” said co-last author Johan Hartman, professor of pathology at the Department of Oncology-Pathology, Karolinska Institutet, and pathologist at the Karolinska University Hospital. “It enables us to offer this type of diagnosis to more people and improves our ability to give the right treatment to any one patient.”

“It’s fantastic that deep learning can help us develop models that don’t just reproduce what specialist doctors do today, but also enable us to extract information beyond the scope of the human eye,” added co-last author Mattias Rantalainen, associate professor and research group leader at the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet.

Related Links:
Karolinska Institutet 


Print article

Channels

Critical Care

view channel
Image: Triage Cardiac Panel is a rapid, POC fluorescence immunoassay used with Triage MeterPro (Photo courtesy of Quidel)

Quidel Triage Cardiac Panel Facilitates Rapid POC Diagnosis of Chest Pain Patients in ED

Chest and abdominal pain are the most common reasons that persons aged 15 years and over visit the emergency department (ED). Because both emergency and non-emergency care are provided, symptoms vary widely... Read more

Surgical Techniques

view channel
Image: Resolute Onyx DES helps address all DES needs and numerous patient anatomies (Photo courtesy of Medtronic)

Medtronic’s Latest Generation Drug-Eluting Coronary Stent System Offers Dual-Layer Balloon Technology

Coronary artery disease (CAD) is one of the leading causes of death and is caused by plaque buildup on the inside of the coronary arteries. These plaque deposits can narrow or clog the inside of the arteries,... Read more

Patient Care

view channel
Image: Future wearable health tech could measure gases released from skin (Photo courtesy of Pexels)

Wearable Health Tech Could Measure Gases Released From Skin to Monitor Metabolic Diseases

Most research on measuring human biomarkers, which are measures of a body’s health, rely on electrical signals to sense the chemicals excreted in sweat. But sensors that rely on perspiration often require... Read more

Health IT

view channel
Image: AI can reveal a patient`s heart health (Photo courtesy of Mayo Clinic)

AI Trained for Specific Vocal Biomarkers Could Accurately Predict Coronary Artery Disease

Earlier studies have examined the use of voice analysis for identifying voice markers associated with coronary artery disease (CAD) and heart failure. Other research groups have explored the use of similar... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.