We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Detecto

Download Mobile App




AI Algorithm Combined With Blood Test Quickly and Accurately Diagnoses Heart Attacks in Women

By HospiMedica International staff writers
Posted on 05 Sep 2022
Print article
Image: Artificial intelligence could help narrow heart attack gender gap (Photo courtesy of Unsplash)
Image: Artificial intelligence could help narrow heart attack gender gap (Photo courtesy of Unsplash)

Previous research has shown that women in the UK who have a heart attack receive poorer care than men at every stage. Women were 50% more likely to receive a wrong initial diagnosis, highlighting the need for innovations to help close the heart attack gender gap. Measuring the protein troponin in the blood is the current gold standard for diagnosing a heart attack. However, the levels of troponin released by the heart vary between men and women, with age and other health conditions. Current guidelines use the same threshold for all patients, meaning current tests are not as accurate as they could be. Now, an algorithm developed using artificial intelligence (AI) could help doctors to diagnose heart attacks in women more accurately and quicker than ever before.

Researchers at the University of Edinburgh (Edinburgh, Scotland) combined data from 10,038 people (48% women) who went to hospital with a suspected heart attack to develop an AI-based tool to help clinicians diagnose heart attacks more accurately. They then validated it on a further 3,035 people (31% women) outside of the UK. The tool, called CoDE-ACS, uses AI to combine routinely collected patient information when they arrive at hospital (including sex, age, observations, ECG findings and medical history) with the results from the troponin blood test. This then produces a score of 0 to 100.

The team found that CoDE-ACS was able to rule out a heart attack with 99.5% accuracy, confirming they were safe to go home. It also identified those who would benefit from staying in hospital for further tests, in whom the final diagnosis was a heart attack, with an accuracy of 83.7%. This compares to an accuracy of just 49.4% with current tests. Fewer than half of those identified for further testing using current approaches had a diagnosis of heart attack. The performance of the tool was consistent regardless of sex, age and pre-existing health conditions. Current tests mean that some patients’ troponin levels do not fit into the ‘rule in’ or ‘rule out’ thresholds, making clinical decisions more challenging. However, with a second troponin measurement, CoDE-ACS was able refine risk in the 29.5% of people who did not fit the simple ‘rule in’ or ‘rule out’ criteria allowing accurate determination if further action was needed.

“This is a huge step forward which promises to ensure everyone is on a level playing field when it comes to heart attack diagnosis and treatment,” said Professor James Leiper, our Associate Medical Director. “We know that women are more likely to receive a misdiagnosis, but by harnessing the power of AI, this team could provide one solution that helps to make that an issue of the past.”

“We’ve now embedded our algorithm into an easy-to-use mobile app to support doctors in guiding treatment decisions,” said Dimitrios Doudesis, data scientist at the BHF Centre for Cardiovascular Science, University of Edinburgh. “Whilst the troponin test takes 30 minutes to process, we take an array of other health information and add it into the app alongside the troponin measurement. This provides doctors with a precise and instantaneous score to confirm if they can reassure their patient that they haven’t had a heart attack and send them home, or if they require further tests.”

Related Links:
University of Edinburgh

New
Gold Supplier
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
High Frequency X-Ray Generator
SHFR
New
Digital Video Colposcope
CS6/CS6 Pro
New
Portable Finger Pulse Oximeter
Onyx Vantage 9590

Print article

Channels

Critical Care

view channel
Image: The advanced electronic skin could enable multiplex healthcare monitoring (Photo courtesy of Terasaki Institute)

First-of-Its-Kind Electronic Skin Patch Enables Advanced Health Care Monitoring

For some time now, electronic skin (E-skin) patches have been used to monitor bodily physiological and chemical indicators of health. Such monitors, placed on the skin, are capable of measuring various... Read more

Surgical Techniques

view channel
Image: The neuro-chip with soft implantable electrodes could manage brain disorders (Photo courtesy of EPFL)

Implantable Neuro-Chip Uses Machine Learning Algorithm to Detect and Treat Neurological Disorders

Using a combination of low-power chip design, machine learning algorithms, and soft implantable electrodes, researchers have produced a neural interface that can identify and suppress symptoms of different... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Point of Care

view channel
Image: Steripath improves the diagnostic accuracy and timeliness of sepsis test results (Photo courtesy of Magnolia)

All-in-One Device Reduces False-Positive Diagnostic Test Results for Bloodstream Infections

Blood cultures are considered the gold standard diagnostic test for the detection of blood stream infections, such as sepsis. However, positive blood culture results can be frequently wrong, and about... Read more

Business

view channel
Image: Researchers expect broader adoption of AI in healthcare in the near future (Photo courtesy of Pexels)

Artificial Intelligence (AI) Could Save U.S. Healthcare Industry USD 360 Billion Annually

The wider adoption of artificial intelligence (AI) in healthcare could save the U.S. up to USD 360 billion annually although its uptake in the industry is presently limited owing to the absence of trust... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.