We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Detecto

Download Mobile App




AI-Aided Interpretation of Chest X-Ray Improves Reader Performance and Efficiency

By HospiMedica International staff writers
Posted on 03 Sep 2022
Print article
Image: AI-aided chest radiograph interpretation improves reader performance and efficiency (Photo courtesy of Pexels)
Image: AI-aided chest radiograph interpretation improves reader performance and efficiency (Photo courtesy of Pexels)

There has been an increasing interest, with the rise of deep learning and artificial intelligence (AI) applications in medical imaging, to create chest radiograph AI algorithms that can help clinicians to accurately and efficiently detect key radiographic findings. Research shows that AI algorithms can improve the performance of readers when used in a concurrent manner. However, there are concerns about what the impact of AI would be in the real world, given that most research was conducted in a simulated setting without an observer performance tool that mimics the real-world workflow. There is also a lack of evidence on the impact of AI in the reader efficiency, especially in terms of time taken for readers to complete their reports. Now, a new study that explored the impact of AI on reader performance, both in terms of accuracy and efficiency, found that an AI algorithm can improve the reader performance and efficiency in interpreting chest radiograph abnormalities.

Researchers at the Massachusetts General Hospital (Boston, MA, USA) conducted a multicenter cohort study from April to November 2021 that involved radiologists, including attending radiologists, thoracic radiology fellows, and residents, who independently participated in two observer performance test sessions. The study involved a total of 497 frontal chest radiographs from adult patients with and without four target findings (pneumonia, nodule, pneumothorax, and pleural effusion). A commercially available AI algorithm (Lunit INSIGHT CXR, version 3.1.2.0) was used to process the chest radiograph images. The sessions included a reading session with AI and a session without AI, in a randomized crossover manner with a four-week washout period in between. The AI produced a heat map and the image-level probability of the presence of the referable lesion.

The ground truths for the labels were created via consensual reading by two thoracic radiologists. Each reader documented their findings in a customized report template, in which the four target chest radiograph findings and the reader confidence of the presence of each finding was recorded. The time taken for reporting each chest radiograph was also recorded. Sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) were calculated for each target finding. The target findings were found in 351 of 497 chest radiographs. The AI was associated with higher sensitivity for all findings compared with the readers. AI-aided interpretation was associated with significantly improved reader sensitivities for all target findings, without negative impacts on the specificity. Overall, the AUROCs of readers improved for all four target findings, with significant improvements in detection of pneumothorax and nodule. The reporting time with AI was 10% lower than without AI.

In conclusion, the use of an AI algorithm was associated with an improved sensitivity for detection of four target chest radiograph findings (pneumonia, lung nodules, pleural effusion, and pneumothorax) for radiologists, thoracic imaging fellows as well as radiology residents, while maintaining the specificity. These findings suggest that an AI algorithm can improve the reader performance and efficiency in interpreting chest radiograph abnormalities.

Related Links:
Massachusetts General Hospital

New
Gold Supplier
Creatinine Meter
StatSensor Xpress Creatinine Meter
New
Analgesic Gas Delivery System
O-Two Equinox Advantage
New
Handheld POC Ultrasound
P09
New
Memory Foam Mattress
MM-59

Print article

Channels

AI

view channel
Image: A novel research study moves the needle on predicting coronary artery disease (Photo courtesy of Pexels)

AI-Enabled ECG Analysis Predicts Heart Attack Risk Nearly as well as CT Scans

Increased coronary artery calcium is a marker of coronary artery disease that can lead to a heart attack. Traditionally, CT scans are used to diagnose buildup of coronary artery calcium, although CT scanners... Read more

Critical Care

view channel
Image: New spray fights infections and antibiotic resistance (Photo courtesy of Chalmers University of Technology)

Hydrogel-Based Spray Kills Antibiotic-Resistant Bacteria in Wounds and Biomedical Implants

Antibiotic resistance has been ranked among the top ten threats to global health by the World Health Organization (WHO). Antibiotic-resistant bacteria is estimated to cause almost 1.3 million deaths annually... Read more

Surgical Techniques

view channel
Image: The Inspira aspiration catheter has received CE Mark approval (Photo courtesy of Infinity Neuro)

Innovative Aspiration Catheter for Treatment of Stroke Delivers Next-Level Navigation Performance

Stroke is a disease that affects the arteries within and leading to the brain. Globally, stroke is the second-leading cause of death and the third-leading cause of death and disability combined.... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Point of Care

view channel
Image: Steripath improves the diagnostic accuracy and timeliness of sepsis test results (Photo courtesy of Magnolia)

All-in-One Device Reduces False-Positive Diagnostic Test Results for Bloodstream Infections

Blood cultures are considered the gold standard diagnostic test for the detection of blood stream infections, such as sepsis. However, positive blood culture results can be frequently wrong, and about... Read more

Business

view channel
Image: Researchers expect broader adoption of AI in healthcare in the near future (Photo courtesy of Pexels)

Artificial Intelligence (AI) Could Save U.S. Healthcare Industry USD 360 Billion Annually

The wider adoption of artificial intelligence (AI) in healthcare could save the U.S. up to USD 360 billion annually although its uptake in the industry is presently limited owing to the absence of trust... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.