We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Smartwatch Detection of Atrial Fibrillation Has Great Potential, Finds Study

By HospiMedica International staff writers
Posted on 14 Oct 2022
Print article
Image: Better algorithms and machine learning can help smartwatches improve detection of atrial fibrillation (Photo courtesy of Pexels)
Image: Better algorithms and machine learning can help smartwatches improve detection of atrial fibrillation (Photo courtesy of Pexels)

Extended cardiac monitoring in patients and the use of implantable cardiovascular electronic devices can increase detection of atrial fibrillation (AF), but the devices have limitations including short battery life and lack of immediate feedback. Can new smartphone tools that can record an electrocardiogram (ECG) strip and make an automated diagnosis overcome these limitations and facilitate timely diagnosis? In the largest study to date, researchers have found that the use of these devices is challenging in patients with abnormal ECGs, although better algorithms and machine learning may help these tools provide more accurate diagnoses.

In the first “real-world” study focusing on the use of the Apple Watch as a diagnostic tool for AF, investigators at the Bordeaux University Hospital (Bordeaux, France) looked at 734 consecutive hospitalized patients. Each patient underwent a 12-lead ECG, immediately followed by a 30-second Apple Watch recording. The smartwatch’s automated single-lead ECG AF detections were classified as “no signs of atrial fibrillation,” “atrial fibrillation,” or “inconclusive reading.” Smartwatch recordings were given to an electrophysiologist who conducted a blinded interpretation, assigning each tracing a diagnosis of “AF,” “absence of AF,” or “diagnosis unclear.” A second blinded electrophysiologist interpreted 100 randomly selected traces to determine the extent to which the observers agreed.

In approximately one in every five patients, the smartwatch ECG failed to produce an automatic diagnosis. The risk of having a false positive automated AF detection was higher for patients with premature atrial and ventricular contractions (PACs/PVCs), sinus node dysfunction, and second- or third-degree atrioventricular-block. For patients in AF, the risk of having a false negative tracing (missed AF) was higher for patients with ventricular conduction abnormalities (interventricular conduction delay) or rhythms controlled by an implanted pacemaker.

The cardiac electrophysiologists had a high level of agreement for differentiation between AF and non-AF. The smartphone app correctly identified 78% of the patients who were in AF and 81% who were not in AF. The electrophysiologists identified 97% of the patients who were in AF and 89% who were not. Patients with PVCs were three times more likely to have false positive AF diagnoses from the smartwatch ECG, and the identification of patients with atrial tachycardia (AT) and atrial flutter (AFL) was very poor.

“These observations are not surprising, as smartwatch automated detection algorithms are based solely on cycle variability,” said lead investigator Marc Strik, MD, PhD, LIRYC institute, Bordeaux University Hospital, Bordeaux, France, explaining that PVCs cause short and long cycles, which increase cycle variability. “Ideally, an algorithm would better discriminate between PVCs and AF. Any algorithm limited to the analysis of cycle variability will have poor accuracy in detecting AT/AFL. Machine learning approaches may increase smartwatch AF detection accuracy in these patients.”

“With the growing use of smartwatches in medicine, it is important to know which medical conditions and ECG abnormalities could impact and alter the detection of AF by the smartwatch in order to optimize the care of our patients,” Dr. Strik added. “Smartwatch detection of AF has great potential, but it is more challenging in patients with pre-existing cardiac disease.”

Related Links:
Bordeaux University Hospital 

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Intraventricular Neuroendosopic System
MINOP

Print article

Channels

Critical Care

view channel
Image: The flexible, gas-filled balloon is placed in the main pulmonary artery and connected by a catheter to a hollow reservoir (Photo courtesy of Aria CV)

Implantable Device for Pulmonary Hypertension Reduces Cardiac Workload and Enhances Blood Flow

Pulmonary hypertension is a severe, progressive disease affecting as many as 70 million people globally. It develops when the walls of the pulmonary arteries become rigid, losing their ability to stretch... Read more

Surgical Techniques

view channel
Image: New studies have highlighted the benefits of robotic-assisted joint replacement surgery (Photo courtesy of HSS)

Robotic-Assisted Joint Replacement Surgery Improves Patient Outcomes

Robotics is being increasingly integrated into joint replacement surgeries, although more research is required to understand its benefits. Now, researchers from Hospital for Special Surgery (HSS, New York,... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.