We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Radcal

Download Mobile App




AI-Based Smartwatch Accurately Detects Heart Failure Using ECG Signals

By HospiMedica International staff writers
Posted on 23 Nov 2022
Print article
Image: AI transforms smartwatch ECG signals into a diagnostic tool for heart failure (Photo courtesy of Pexels)
Image: AI transforms smartwatch ECG signals into a diagnostic tool for heart failure (Photo courtesy of Pexels)

People with a weak heart pump might not have symptoms, but this common form of heart disease affects about 2% of the population and 9% of people over 60. When the heart cannot pump enough oxygen-rich blood, symptoms may develop, including shortness of breath, a rapid heart rate and swelling in the legs. Early diagnosis is important because once identified, there are numerous treatments to improve quality of life and decrease the risks of heart failure and death. Now, a new study has reported the ability of a smartwatch ECG to accurately detect heart failure in nonclinical environments.

Researchers at Mayo Clinic (Rochester, MN, USA) applied artificial intelligence (AI) to Apple Watch ECG recordings to identify patients with a weak heart pump. Participants in the study recorded their smartwatch ECGs remotely whenever they wanted, from wherever they were. Periodically, they uploaded the ECGs to their electronic health records automatically and securely via a smartphone app developed by Mayo Clinic’s Center for Digital Health.

The Mayo researchers interpreted Apple Watch single-lead ECGs by modifying an earlier algorithm developed for 12-lead ECGs that is proven to detect a weak heart pump. While the data are early, the modified AI algorithm using single-lead ECG data had an area under the curve of 0.88 to detect a weak heart pump. By comparison, this measure of accuracy is as good as or slightly better than a medical treadmill diagnostic test.

"Currently, we diagnose ventricular dysfunction - a weak heart pump - through an echocardiogram, CT scan or an MRI, but these are expensive, time consuming and at times inaccessible. The ability to diagnose a weak heart pump remotely, from an ECG that a person records using a consumer device, such as a smartwatch, allows a timely identification of this potentially life-threatening disease at massive scale," said Paul Friedman, M.D., chair of the Department of Cardiovascular Medicine at Mayo Clinic in Rochester. Dr. Friedman is the senior author of the study.

"These data are encouraging because they show that digital tools allow convenient, inexpensive, scalable screening for important conditions. Through technology, we can remotely gather useful information about a patient's heart in an accessible way that can meet the needs of people where they are," added Zachi Attia, Ph.D., the lead AI scientist in the Department of Cardiovascular Medicine at Mayo Clinic and first author of the study.

"Building the capability to ingest data from wearable consumer electronics and provide analytic capabilities to prevent disease or improve health remotely in the manner demonstrated by this study can revolutionize health care. Solutions like this not only enable prediction and prevention of problems, but also will eventually help diminish health disparities and the burden on health systems and clinicians," stated Bradley Leibovich, M.D., the medical director for the Mayo Clinic Center for Digital Health, and co-author on the study.

Related Links:
Mayo Clinic 

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Anatomic Glenoid System
Alliance Glenoid

Print article

Channels

Surgical Techniques

view channel
Image: Concept of the wirelessly actuated undulating pump and its integration into an esophageal stent (Photo courtesy of Advanced Functional Materials/ doi.org/10.1002/adfm.202405865)

Wirelessly Activated Robotic Device Aids Digestion in Patients with Compromised Organs

The transport of fluids and solids is essential in the human body, driven by a wave-like movement in the lumen known as peristalsis. However, peristalsis can be disrupted in patients who have obstructions... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.