We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




AI Helps Hospitals Priorities Patients for Urgent Intensive Care and Ventilator Support

By HospiMedica International staff writers
Posted on 23 Jan 2023
Print article
Image: Researchers have developed an AI-enabled system for prioritizing pneumonia patient treatment (Photo courtesy of Swansea University)
Image: Researchers have developed an AI-enabled system for prioritizing pneumonia patient treatment (Photo courtesy of Swansea University)

Researchers have developed a ‘digital twin’ that can help hospitals to prioritize patients for urgent intensive care and ventilator support. The new innovative system could potentially allow patients to be seen more quickly and receive the most effective treatment based on data from previous pneumonia sufferers.

The three-tiered system developed by a research team at Swansea University (Swansea, UK) uses deep learning methods to build patient-specific digital twins to identify and prioritize critical cases among patients with severe pneumonia. A digital twin is a virtual representation (or computer program) of a real-world physical system or product – it is updated from real-time data, and uses simulation, machine learning and reasoning to aid in decision-making.

“A human digital-twin is a digital replica of a human system or sub-system. This replica is a personalized digital representation, in terms of structure or functioning or both, of an individual or patient’s system,” said Professor Perumal Nithiarasu, Author and Associate Dean for Research, Innovation & Impact in the Faculty of Science & Engineering. “A human digital-twin is a digital replica of a human system or sub-system. This replica is a personalized digital representation, in terms of structure or functioning or both, of an individual or patient’s system. It can provide real-time feedback on how a patient’s health is likely to vary based on their current known condition using periodic input data from the patient’s vitals (such as heart rate, respiration rate).”

“The proposed digital-twin is built on pre-trained deep learning models using data from more than 1895 pneumonia patients. Overall, results indicate that the prediction for ITU and mechanical ventilation prioritization is excellent,” added Professor Nithiarasu. “The data used to train the models is for non-COVID-19 patients with pneumonia. However, this model may be employed in its current form to COVID-19 patients, but transfer learning with COVID-19 patient data will improve the predictions.”

“The COVID-19 pandemic has put an unprecedented stress on an already strained healthcare infrastructure. This situation has forced healthcare providers to prioritize patients in critical need to access ITUs and mechanical ventilation,” explained Dr. Neeraj Kavan Chakshu, Co-Author and IMPACT Fellow. “In the case of COVID-19 (and in other similar forms of influenza), more precise and dynamically evolving system may be necessary to address the sudden increase in severity and the need for mechanical ventilation.”

Related Links:
Swansea University

Gold Supplier
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
New
Allograft
AXIOFILL
New
Dose Area Product Measuring System
VacuDAP duo
New
Patient Positioning Devices & OR Accessories
SchureMed Tools

Print article
FIME - Informa

Channels

Critical Care

view channel
Image: New technology gives patients the power to heal chronic wounds using their own blood (Photo courtesy of RedDress)

POC Solution Creates In Vitro Blood Clots from Patient’s Own Whole Blood in Real-Time to Treat Post-Surgical Wounds

Blood clots are a natural mechanism of the body's healing process. However, for chronic wounds resulting from diabetes and other conditions, blood is unable to reach these areas, hampering the initiation... Read more

Surgical Techniques

view channel
Image: The deployable electrodes are ideal for minimally invasive craniosurgery (Photo courtesy of EPFL)

Soft Robotic Electrode Offers Minimally Invasive Solution for Craniosurgery

Minimally invasive medical procedures offer numerous benefits to patients, including decreased tissue damage and shorter recovery periods. However, creating equipment that can pass through a small opening... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: IntelliSep is the first FDA-cleared diagnostic tool to assess cellular host response to aid in identifying ED patients with sepsis (Photo courtesy of Cytovale)

Rapid Microfluidic Test Demonstrates Efficacy as Diagnostic Aid to Improve Sepsis Triage in ED

Sepsis is the primary cause of mortality worldwide, accounting for over 350,000 fatalities annually in the United States alone, a figure that surpasses deaths from opioid overdoses, prostate cancer, and... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.