We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Evidence-Based Algorithms Could Improve Diagnosis of Pediatric Tuberculosis

By HospiMedica International staff writers
Posted on 16 Mar 2023
Print article
Image: The WHO has conditionally recommended the use of algorithms in assisting with pediatric tuberculosis diagnosis (Photo courtesy of Pexels)
Image: The WHO has conditionally recommended the use of algorithms in assisting with pediatric tuberculosis diagnosis (Photo courtesy of Pexels)

Tuberculosis (TB) continues to be one of the most prevalent causes of death among younger populations worldwide. Research indicates that over 96% of the deadly TB cases in children under the age of 15 occur due to the lack of any treatment being provided. However, there is now hope for a reversal in this trend with the development of two novel evidence-based algorithms for diagnosing pediatric TB.

A research team led by scientists at Yale School of Public Health (New Haven, CT, USA) has devised algorithm-based scoring mechanisms that could allow healthcare professionals to make more informed decisions when diagnosing TB, a condition that is notoriously challenging to recognize in low-resource settings. The team at Yale, working alongside a global network of scientists, analyzed medical data related to over 4,000 pediatric TB cases from across the world. Using statistical analyses, the researchers developed the most robust algorithms ever devised for pediatric TB. Following their analysis, the World Health Organization (WHO) has endorsed the implementation of these algorithms as part of its newest comprehensive guidelines for TB management. Additionally, the WHO is encouraging the utilization of the Yale-led team's algorithms.

Using algorithms to assist in pediatric TB diagnosis is hardly new. Similar algorithms have been devised to improve disease diagnosis, although they rely mostly on expert opinion, instead of on rigorous interpretation of data. Furthermore, some evidence-based algorithms were developed using limited sample size, thereby limiting their generalizability. In order to create more robust scoring systems, the Yale scientists combined data from 13 studies involving 4,718 children, spanning 12 countries. The team developed two algorithms depending on the healthcare workers' ability to obtain chest X-rays of their patients. With both algorithms, patients are assigned a specific number of points based on their presenting symptoms and other relevant details, which healthcare professionals can add up to receive the recommendation. Generally, correct diagnoses are made approximately 85% of the time if the score is above 10. Patients may also receive scores above 10 if they're known to have been exposed to TB, regardless of the presence of other symptoms.

The researchers anticipate that their algorithms will facilitate more timely treatment for pediatric TB patients, but have warned about some limitations to their scoring systems, particularly due to their inability to formally test the algorithms. However, the team will conduct future studies to assess the capability of their algorithms to diagnose TB in real-world settings. Combining data from multiple studies can improve statistical analyses and create more robust data sets, although varying inclusion criteria and study definitions might result in slightly skewed data. Additionally, given the difficulty in diagnosing TB, some conclusions might be incorrect, according to the researchers. Further studies on pediatric TB, additional data and better diagnostic tools could help significantly refine the new algorithms. Nonetheless, the WHO's conditional recommendation of these algorithms as an aid to pediatric TB diagnosis, and its encouragement of the use of the Yale-led research group's algorithm paves the way for future research.

“I’m really looking forward to seeing the results of the prospective evaluation of these algorithms when others are actually going to use them in a study setting to aid in treatment decision-making for children being investigated for TB,” said Kenneth Gunasekera, a Yale M.D.-Ph.D. student who was first author on the study. “We built the algorithms based on evidence, but it will be exciting to see how well they will actually perform.”

Related Links:
Yale School of Public Health

Platinum Supplier
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Supplier
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
New
Cart-Based Ultrasound System
SonoMax 9
New
Polyp Retrieval Trap
Polyp Trap

Print article
Radcal

Channels

Critical Care

view channel
Image: Flexible thin-film electrodes placed directly on brain tissue have shown promise for diagnosis and treatment of epilepsy (Photo courtesy of Tokyo Tech)

Thin-Film Neural Electrodes Placed Directly on Brain Tissue Can Diagnose and Treat Epilepsy

Analyzing brain activity is crucial for diagnosing conditions like epilepsy and other mental health disorders. Among various methods, electroencephalography (EEG) is considered the least intrusive, using... Read more

Surgical Techniques

view channel
Image: The Canady Robotic AI Surgical System (Photo courtesy of JCRI-ABTS)

AI Robotic System Selectively Kills Microscopic Tumor Cells without Damaging Surrounding Tissue

When treating cancer, surgeons usually aim to remove the tumor along with a surrounding "margin" of healthy tissue to make sure all cancer cells have been taken out. However, even with advancements in... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The broad-spectrum POC coagulometer is well-suited for emergency room and emergency vehicle use (Photo courtesy of Perosphere)

Novel POC Coagulometer with Lab-Like Precision to Revolutionize Coagulation Testing

In emergency settings, when patients arrive with a bleed or require urgent surgery, doctors rely solely on clinical judgment to determine if a patient is adequately anticoagulated for reversal treatment.... Read more

Business

view channel
Image: The global surgical lights market is expected to grow by close to USD 0.50 billion from 2022 to 2027 (Photo courtesy of Freepik)

Global Surgical Lights Market Driven by Increasing Number of Procedures

The global surgical lights market is set to witness high growth, largely due to the increasing incidence of chronic illnesses, a surge in demand for cosmetic and plastic surgeries, and untapped opportunities... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.