We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Machine Learning Programs Predict Mortality Risk by Analyzing Results from Routine Hospital Tests

By HospiMedica International staff writers
Posted on 22 Mar 2023
Print article
Image: Machine learning program can accurately predict a patient’s risk of death within a month, a year and five years (Photo courtesy of Pexels)
Image: Machine learning program can accurately predict a patient’s risk of death within a month, a year and five years (Photo courtesy of Pexels)

Individuals having high blood pressure or symptoms of heart disease, such as chest pain, shortness of breath or an irregular heartbeat generally visit a hospital or an emergency department. In such cases, a clinician usually orders an electrocardiogram, or ECG - a standard test in which tiny electrodes are taped to the chest for checking the heart’s rhythm and electrical activity. Hospital ECGs are mostly read by a doctor or nurse at the patient’s bedside, but now researchers are applying artificial intelligence (AI) to gather additional information from those results to improve patients care.

A research team at University of Alberta (Edmonton, Alberta, Canada) has developed and trained machine learning programs using a massive dataset of 1.6 million ECGs performed on 244,077 patients spanning over a period from 2007 till 2020. The algorithm predicted the risk of death from all causes within one month, one year, and five years with an impressive 85% accuracy rate, ranking the patients into one of five categories, ranging from the lowest to the highest risk. The algorithm's precision was substantially enhanced when demographic information such as age and sex, along with the results of six standard laboratory blood tests (creatinine, kidney function, sodium, troponin, hemoglobin, and potassium) were incorporated into the analysis.

This study serves as a proof-of-concept for utilizing routinely collected data to enhance individual care, enabling the healthcare system to “learn” on the go. The initial phase of the study examined ECG results of all the patients. However, the research team aims to refine these predictive models to cater to specific subgroups of patients. In the subsequent phases, the study will also focus on forecasting heart-related causes of death. The researchers highlight the immense advantage of employing high-powered computing as it can simultaneously view the patterns in a multitude of data points.

“These findings illustrate how machine learning models can be employed to convert data collected routinely in clinical practice to knowledge that can be used to augment decision-making at the point of care as part of a learning health-care system,” the researchers concluded in the study.

Related Links:
University of Alberta

Platinum Supplier
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Specimen Collection & Transport
New
Exam Table
PF400
Gold Supplier
Heavy-Duty Wheelchair Scale
6495 Stationary

Print article
Detecto

Channels

Critical Care

view channel
Image: The gel has been developed for sealing and healing challenging gastrointestinal tract-to-skin connections (Photo courtesy of Terasaki Institute)

Innovative Gel Offers Revolutionary Treatment for Challenging Gastrointestinal Leaks

Gastrointestinal leaks, medically referred to as enterocutaneous fistulas, are abnormal pathways between the gastrointestinal tract and the skin, often resulting from surgical complications.... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.