We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

Machine Learning Algorithm Diagnoses Stroke with 83% Accuracy

By HospiMedica International staff writers
Posted on 11 Apr 2023
Print article
Image: ML algorithm uses hospital data and social determinants of health data to diagnose a stroke (Photo courtesy of Freepik)
Image: ML algorithm uses hospital data and social determinants of health data to diagnose a stroke (Photo courtesy of Freepik)

Stroke is one of the most frequently misdiagnosed medical conditions, and prompt detection is crucial for effective treatment. Patients treated within an hour of symptom onset have a higher chance of survival and avoiding long-term brain damage. Data reveals that Blacks, Hispanics, women, older adults on Medicare, and rural residents are less likely to be diagnosed within this critical timeframe. Existing pre-hospital stroke scales overlook about 30% of cases. New research has shown that a machine learning (ML) algorithm, utilizing hospital data and social determinants of health data, can diagnose a stroke quickly—before laboratory test results or diagnostic images become available—with 83% accuracy. This finding suggests the possibility of reducing stroke misdiagnosis and enhancing patient monitoring, enabling medical staff to identify stroke patients or those at risk sooner and improving patient outcomes.

Researchers at Florida International University (Miami, FL, USA) developed the ML algorithm for better stroke diagnosis utilizing data from suspected stroke patients, such as age, race, and number of underlying conditions. Social determinants of health (SDoH) are non-medical factors like race, income, and housing stability that influence a wide range of health outcomes. The researchers utilized emergency department and hospitalization records from Florida hospitals between 2012 and 2014, combined with SDoH data from the American Community Survey, to create the ML stroke prediction algorithm. Their analysis included 143,203 unique patient hospital visits. Stroke-diagnosed patients were typically older, had more chronic conditions, and primarily relied on Medicare.

With the researchers' ML algorithm, when a patient arrives at a hospital with stroke or stroke-like symptoms, an automated, computer-assisted screening tool quickly analyzes the patient's information. If the algorithm predicts a high risk for stroke, a pop-up alert is triggered for the emergency department team. Current ML methods often focus on interpreting clinical notes and diagnostic imaging results, which may not be available upon patient arrival, especially in rural and underserved communities. This technology is presently undergoing pilot testing in the emergency departments of various prominent healthcare systems.

"As we add more data it's learning data," said Min Chen, associate professor of information systems and business analytics at FIU Business and one of the researchers. "Our algorithm can incorporate a lot of variables to analyze and interpret complex patterns, which will allow emergency department care teams to make better and faster decisions."

Related Links:
Florida International University 

Platinum Supplier
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Supplier
12-Channel ECG
Single Cavity Combination Warmer
Bariatric Stair Chair
EZ-Glide LBS

Print article


Critical Care

view channel
Image: The new blood test could prevent some of the 350,000 sepsis deaths in the U.S. annually (Photo courtesy of Cytovale)

Sepsis Test Could Save Lives in Emergency Departments, Study Suggests

Sepsis poses a severe, life-endangering illness that arises when an infection triggers a body-wide chain reaction, potentially causing multiple organs to fail quickly. Prompt and accurate diagnosis is... Read more

Surgical Techniques

view channel
Image: Suppressing production of an immune protein could reduce rejection of biomedical implants (Photo courtesy of 123RF)

Protein Identified for Immune Rejection of Biomedical Implants to Pave Way for Bio-Integrative Medical Devices

Biomedical implants like breast implants, pacemakers, and orthopedic devices have revolutionized healthcare, yet a substantial number of these implants face rejection by the body and have to be removed.... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The broad-spectrum POC coagulometer is well-suited for emergency room and emergency vehicle use (Photo courtesy of Perosphere)

Novel POC Coagulometer with Lab-Like Precision to Revolutionize Coagulation Testing

In emergency settings, when patients arrive with a bleed or require urgent surgery, doctors rely solely on clinical judgment to determine if a patient is adequately anticoagulated for reversal treatment.... Read more


view channel
Image: The global surgical lights market is expected to grow by close to USD 0.50 billion from 2022 to 2027 (Photo courtesy of Freepik)

Global Surgical Lights Market Driven by Increasing Number of Procedures

The global surgical lights market is set to witness high growth, largely due to the increasing incidence of chronic illnesses, a surge in demand for cosmetic and plastic surgeries, and untapped opportunities... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.