We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App

New Model Predicts 10 Year Breast Cancer Risk

By HospiMedica International staff writers
Posted on 05 Sep 2023
Print article
Image: The model predicts a woman`s likelihood of developing and dying of breast cancer within a decade (Photo courtesy of Freepik)
Image: The model predicts a woman`s likelihood of developing and dying of breast cancer within a decade (Photo courtesy of Freepik)

Breast cancer screening is a vital tool against the deadly disease, yet it faces its share of challenges. Although it reduces breast cancer-related deaths, it also has the potential to detect non-harmful tumors (overdiagnosis), leading to unnecessary treatments. This not only adversely affects some women but also drives up healthcare costs unnecessarily. 'Risk-based screening' is a strategy aimed at customizing screening approaches based on an individual's risk profile, aiming to maximize benefits and minimize drawbacks. Tailoring screening programs based on individual risks was recently identified as a way to refine screening strategies. Presently, most risk-based breast screening models estimate a woman's risk of being diagnosed with breast cancer. However, not all breast cancers are fatal, and the risk of diagnosis doesn't always align with the risk of death post-diagnosis. Now, researchers have devised a new model that accurately predicts a woman's likelihood of both developing and then succumbing to breast cancer within a decade.

The new model developed by a team of researchers at University of Oxford (Oxford, UK) predicts a woman's 10-year combined risk of breast cancer development and subsequent mortality. The aim is to identify women at the highest risk of deadly cancers in order to enhance the effectiveness of screening programs. Such high-risk individuals might be encouraged to initiate screening earlier, receive more frequent screenings, or undergo different types of imaging. This personalized strategy not only has the potential to reduce breast cancer fatalities but also avoid unnecessary screening for women with lower risk. Women with an elevated risk of deadly cancer could also be considered for preventive treatments against the development of breast cancer.

The research team explored four distinct modeling techniques to predict breast cancer mortality risk. Two followed conventional statistical methodologies, while the other two harnessed machine learning, a branch of artificial intelligence. All models incorporated identical data types, including age, weight, smoking history, family history of breast cancer, and hormone therapy (HRT) usage. The models underwent evaluation for their overall predictive accuracy, spanning various women's groups with diverse characteristics such as different age brackets and ethnic backgrounds. An approach called 'internal-external cross-validation' was employed. This method involves dividing the dataset into structurally distinct segments, based on factors like region and time frame, to assess the model's adaptability across different scenarios. The outcomes revealed that a statistical model constructed using 'competing risks regression' outperformed the rest. This model demonstrated the highest accuracy in predicting which women would develop and face breast cancer mortality within a 10-year span. The machine learning models displayed comparatively lower accuracy, particularly for diverse ethnic women's groups.

“This is an important new study which potentially offers a new approach to screening. Risk-based strategies could offer a better balance of benefits and harms in breast cancer screening, enabling more personalized information for women to help improve decision making,” said University of Oxford Professor Julia Hippisley-Cox. “Risk based approaches can also help make more efficient use of health service resources by targeting interventions to those most likely to benefit.”

Related Links:
University of Oxford 

Gold Member
Solid State Kv/Dose Multi-Sensor
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Compact 14-Day Uninterrupted Holter ECG
Radial Shock Wave Device

Print article


Critical Care

view channel
Image: The new risk assessment tool determines patient-specific risks of developing unfavorable outcomes with heart failure (Photo courtesy of 123RF)

Powerful AI Risk Assessment Tool Predicts Outcomes in Heart Failure Patients

Heart failure is a serious condition where the heart cannot pump sufficient blood to meet the body's needs, leading to symptoms like fatigue, weakness, and swelling in the legs and feet, and it can ultimately... Read more

Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.