We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App

AI Diagnostic Tool Accurately Detects Valvular Disorders Often Missed by Doctors

By HospiMedica International staff writers
Posted on 12 Oct 2023
Print article
Image: The AI tool detects cardiac diseases that doctors often miss (Photo courtesy of 123RF)
Image: The AI tool detects cardiac diseases that doctors often miss (Photo courtesy of 123RF)

Doctors generally use stethoscopes to listen for the characteristic lub-dub sounds made by heart valves opening and closing. They also listen for less prominent sounds that indicate problems with these valves. But the human body is full of other noises, like the flow of blood, stomach rumblings, and breath sounds, which can easily mask the signs of valvular heart disease (VHD). Research reveals that only 44% of VHD cases are caught through regular stethoscope check-ups. This leads to delayed diagnoses, worsening health conditions for patients, and huge costs for the healthcare system. To improve on this, researchers have now developed a new diagnostic tool that uses a short burst of audio data to accurately identify VHD.

Researchers at Stevens Institute of Technology (Hoboken, NJ, USA) used a contact microphone to take 10-second sound vibrations directly from a patient's chest. This data was then analyzed by an AI model adapted from algorithms normally used in speech processing to separate overlapping voices. In this case, the algorithm works to isolate the specific sounds associated with different types of heart valve diseases. The AI system can quickly identify up to five different types of valvular issues in a single patient, even if more than one condition is present.

The AI tool can detect VHD with 93% sensitivity and 98% specificity, substantially reducing undiagnosed cases and limiting false positives. The results are given in a simple 5-digit code made of ones and zeros, indicating the presence or absence of specific VHD. What sets this diagnostic tool apart from previously used neural networks to detect VHD is the use of accelerometers instead of more complex and cumbersome machines. Not only is this technique more accurate, but it also has the potential for further refinement. The team aims to extend their approach to identify other cardiovascular conditions and hopes to integrate this technology into medical practices nationwide, making it easier to diagnose cardiac disorders.

“Most cases of VHD are missed because of human error — so we brought in AI to help the human,” explained Negar Ebadi, the principal investigator of the project. “Our current goal is to collect more data so we can begin to classify diseases by severity — so instead of showing that you have a particular valvular disorder, we could give a grade out of 10 describing how far the disease has progressed.”

Related Links:
Stevens Institute of Technology 

Gold Member
Solid State Kv/Dose Multi-Sensor
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Compact 14-Day Uninterrupted Holter ECG
Ultra Low Floor Level Bed
Solite Pro

Print article


Surgical Techniques

view channel
Image: LUMISIGHT and Lumicell DVS offer 84% diagnostic accuracy in detecting residual cancer (Photo courtesy of Lumicell)

Cutting-Edge Imaging Platform Detects Residual Breast Cancer Missed During Lumpectomy Surgery

Breast cancer is becoming increasingly common, with statistics indicating that 1 in 8 women will develop the disease in their lifetime. Lumpectomy remains the predominant surgical intervention for treating... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.