Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Wireless Implantable LED Device Treats Deep-Seated Cancers Using Light

By HospiMedica International staff writers
Posted on 10 Jul 2024

Certain types of light, when used in conjunction with a light-activated drug, have been shown to be an effective, minimally invasive treatment for cancers situated on or just beneath the skin. More...

However, cancers that are deep-seated and shielded by layers of tissue, blood, and bone have historically been unreachable by light-based treatments. To extend the therapeutic benefits of light to these more inaccessible cancers, a team of engineers and scientists has developed a wireless, implantable LED device. This innovative device, when used alongside a light-sensitive dye, not only kills cancer cells but also stimulates the immune system’s cancer-targeting response.

Some colors of light have been found to penetrate tissue deeper than others. Green light, which does not penetrate very deeply, is particularly effective at eliciting a strong anti-cancer response. However, before the light can effectively destroy cancer cells, the cells must be treated with a dye that contains light-absorbing molecules. Engineers and scientists at the University of Notre Dame (Notre Dame, IN, USA) have created a device that activates this dye, converting the light into energy that converts the cells’ own oxygen into a toxic agent, thereby turning the cancer cells against themselves. While other treatments also use the cells' oxygen in a similar manner, this device uniquely induces a type of cell death that is especially beneficial.

In their research published in Photodiagnosis and Photodynamic Therapy, the team observed that the treated cells exhibited swelling, indicative of a type of cell death known as pyroptosis. This form of cell death is particularly effective at activating the immune response. The device, small enough to be the size of a grain of rice, can be injected directly into a tumor and activated remotely via an external antenna. The aim is to induce a small amount of pyroptotic cell death, which in turn triggers the immune system to begin attacking the cancer. The device is designed not just to administer treatment but also to monitor the tumor’s response, allowing for adjustments in signal strength and timing as necessary. Future experiments will involve using the device in mice to determine if the immune response triggered in one tumor can encourage the immune system to recognize and attack another cancerous tumor independently.


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Pressure Guidewire
SavvyWire
Adjustable Mobile Barrier
M-458
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The AI-based approach identifies lipid regions matched well with histopathology results (Photo courtesy of Hyeong Soo Nam/KAIST)

AI-Based OCT Image Analysis Identifies High-Risk Plaques in Coronary Arteries

Lipid-rich plaques inside coronary arteries are strongly associated with heart attacks and other major cardiac events. While optical coherence tomography (OCT) provides detailed images of vessel structure... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.