Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




New Biomaterial That Regrows Damaged Cartilage in Joints to Help Avoid Full Knee Replacement Surgeries

By HospiMedica International staff writers
Posted on 07 Aug 2024

Cartilage plays a vital role in joint function and health, but it does not naturally regenerate in adults, leading to significant health and mobility issues when damaged. More...

Scientists have now introduced a bioactive material that has effectively regenerated high-quality cartilage in knee joints within a large animal model. This substance, though it appears rubbery and gooey, is a complex network of molecular components designed to mimic the natural environment of cartilage in the body.

This groundbreaking research conducted by scientists at Northwestern University (Evanston, IL, USA) involved applying this novel material to the knee joints of animals where cartilage was damaged. Within six months, significant cartilage repair was observed, with the development of new cartilage enriched with natural biopolymers like collagen II and proteoglycans, crucial for joint resilience and pain-free movement. The researchers believe that this material could eventually help avoid the need for knee replacement surgeries, treat conditions such as osteoarthritis, and mend sports injuries like ACL tears. This follows their previous research published in the Proceedings of the National Academy of Sciences, where they explored the use of “dancing molecules” to stimulate cartilage cell activity in humans.

In their latest study, the team introduced a hybrid biomaterial, which includes a bioactive peptide that attaches to transforming growth factor beta-1 (TGFb-1), vital for cartilage growth and upkeep, and a specially modified version of hyaluronic acid, a natural component of cartilage and joint lubricant. These elements combine to form nanoscale fibers that organize into bundles, mimicking cartilage's structure and creating a scaffold that attracts the body’s cells for tissue regeneration. To test the effectiveness of this new material in cartilage growth, the material was evaluated in sheep with cartilage defects in their stifle joints, which closely resemble human knees in terms of load-bearing and size. The study, simulating human cartilage conditions due to its notoriously tough regenerative properties, involved injecting the biomaterial into the cartilage defects. This injection transformed into a rubbery matrix, facilitating the growth of new cartilage as the scaffold gradually broke down, with results showing a higher quality of repair than in control groups. Going forward, the research team envisions this material could be applied directly to joints during surgical procedures such as open-joint or arthroscopic surgeries, offering a potential improvement over the current microfracture surgery standard, which stimulates cartilage growth by creating small fractures in the bone.

“Our new therapy can induce repair in a tissue that does not naturally regenerate. We think our treatment could help address a serious, unmet clinical need,” said Northwestern’s Samuel I. Stupp, who led the study.

Related Links:
Northwestern University


Gold Member
12-Channel ECG
CM1200B
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Mammography System (Analog)
MAM VENUS
Head Rest
Medifa 61114_3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.