We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Machine Learning Detects Cardiovascular Diseases Before Symptoms Appear

By HospiMedica International staff writers
Posted on 14 Aug 2024
Print article
Image: Changes in the electric fields can be precisely analyzed in the simulations (Photo courtesy of TU Graz)
Image: Changes in the electric fields can be precisely analyzed in the simulations (Photo courtesy of TU Graz)

Cardiovascular diseases rank among the leading causes of mortality globally, often remaining undetected until symptoms manifest and the condition becomes advanced, necessitating surgical intervention over medication. Researchers have devised a method to enhance the early detection of these diseases, bypassing expensive diagnostics like MRI or CT, through the use of a digital twin of the patient, which also allows for more in-depth disease investigation. This innovation promises to ease the strain on patients, doctors, and medical facilities alike.

Developed by the team at Graz University of Technology (TU Graz, Styria, Austria), this new approach leverages the principle that any disease altering cardiovascular mechanics also modifies the externally applied electrical field in specific ways, affecting conditions such as arteriosclerosis, aortic dissection, aneurysms, and heart valve defects. Researchers can utilize standard electrical, bio-impedance, or optical signals—from ECGs, PPGs, or smartwatches—which are analyzed through a self-developed machine learning model. This model detects potential diseases from the signals and assesses the likelihood of their presence, enabling earlier intervention when medication might still be viable over surgery.

The machine learning model's training incorporated real clinical bio-impedance data and simulation values from cardiovascular system models. With numerous cardiovascular parameters and extensive simulation needs for statistically significant results, machine learning enables the achievement of results with more than 90% accuracy swiftly. Another benefit of this machine learning analysis is its capacity to identify changes in ECG data that are not easily visible to even seasoned physicians.

For instance, this technology can assess the extent of arterial stiffening, often a precursor to aortic dissection, thus serving as an early warning sign. Once a significant change is detected, the diagnostic data can be used to construct a multi-physical simulation model or a digital twin, which not only predicts the disease's progression but also facilitates deeper analysis by medical professionals. The researchers are actively refining this technology in collaboration with healthcare industry partners to enhance the accuracy of their algorithms and further tailor them for clinical application.

“There is a lot of information that can be collected from outside the body with little effort,” said Vahid Badeli from the Institute of Fundamentals and Theory in Electrical Engineering at TU Graz. “So far, it has been difficult to find out exactly what this information means. But with our computer models and the help of machine learning, we can understand it better and find correlations.”

Related Links:
TU Graz

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Ambulatory Blood Pressure Monitor
ABPM70
New
Oscillation & Lung Expansion Therapy System
Volara System

Print article

Channels

Surgical Techniques

view channel
Image: Schematic illustration of rADSC-loaded tubular units promoting bone regeneration of critical-sized skull defects (Photo courtesy of Sun Yat-sen University)

Groundbreaking Tubular Scaffolds Significantly Enhance Bone Regeneration of Critical-Sized Skull Defects

Critical-sized bone defects present a major challenge in the medical field. Traditional treatments like autografts and allografts face limitations due to donor shortages, mismatches in graft sizes, and... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
The Atellica VTLi Patient-side Immunoassay Analyzer, a high-sensitivity troponin I test at the bedside, delivers accurate results in just 8 minutes (Photo courtesy of Siemens Healthineers)

New 8-Minute Blood Test to Diagnose or Rule Out Heart Attack Shortens ED Stay

Emergency department overcrowding is a significant global issue that leads to increased mortality and morbidity, with chest pain being one of the most common reasons for hospital admissions.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.