We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Injectable Cardiac Stimulator Corrects Heart Arrhythmia in Emergency Situations

By HospiMedica International staff writers
Posted on 29 Aug 2024
Print article
Image: The illustration shows how the injectable heart stimulator is supposed to work when fully developed and tested (Photo courtesy of Lund University)
Image: The illustration shows how the injectable heart stimulator is supposed to work when fully developed and tested (Photo courtesy of Lund University)

Arrhythmia, a condition characterized by irregular heartbeats, occurs when the heart's electrical signals are disrupted, causing it to beat too quickly, slowly, or unevenly. While medications are commonly used to manage arrhythmia, some procedures can directly alter the heart's rhythm, such as the use of defibrillators or the surgical implantation of pacemakers. However, such interventions can be particularly challenging to implement in remote or conflict areas where access to such medical devices is limited. Now, research on animals has demonstrated a groundbreaking approach: the injection of a nanoparticle solution around the heart that forms a temporary, self-assembling heart stimulator. This device can correct arrhythmias in emergencies through an external power source and then naturally disintegrates after its use, as detailed in a publication in Nature Communications.

Nanoparticles are minuscule, allowing them to be administered via an ultra-thin needle. In a collaborative effort led by researchers at Lund University (Lund, Sweden), these nanoparticles were shown to form a conductive polymer structure around the heart upon contact with tissue. This structure seamlessly integrates with cardiac cells, supports ECG monitoring, regulates heartbeat, and corrects arrhythmic events. The close contact between the polymer and heart tissue ensures that the stimulator functions efficiently with minimal power, which can be supplied by portable devices such as a mobile phone. By connecting a cable from the phone to the injection site near the heart, the phone can power the electrode.

The research team plans to develop a mobile app that would allow individuals to control the arrhythmia until professional medical help can be accessed. Initial tests have been conducted on small animal models like zebrafish and chicken embryos, adhering to the 3R principle to minimize the use of mammalian subjects in scientific research. With promising results from these preliminary stages, the researchers aim to advance to testing on larger animals, such as pigs, to pave the way for potential human application.

"We have developed an injectable heart stimulator for emergency situations, which consists of a syringe loaded with a solution of nanoparticles," said Roger Olsson, Professor of Chemical Biology and Therapeutics at Lund University and Professor of Medicinal Chemistry at the University of Gothenburg.

"The method is minimally invasive. Moreover, the heart stimulator spontaneously degrades and is excreted from the body after treatment, so it does not need to be surgically removed," added Martin Hjort, Associate Researcher in Chemical Biology and Therapeutics at Lund University.

Related Links:
Lund University

Gold Member
12-Channel ECG
CM1200B
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
6 Drawer X-Tall Emergency Cart
UXRLU-333669-RED
New
Plate System
ADIRA XLIF Plate System

Print article

Channels

Surgical Techniques

view channel
Image: Schematic illustration of rADSC-loaded tubular units promoting bone regeneration of critical-sized skull defects (Photo courtesy of Sun Yat-sen University)

Groundbreaking Tubular Scaffolds Significantly Enhance Bone Regeneration of Critical-Sized Skull Defects

Critical-sized bone defects present a major challenge in the medical field. Traditional treatments like autografts and allografts face limitations due to donor shortages, mismatches in graft sizes, and... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
The Atellica VTLi Patient-side Immunoassay Analyzer, a high-sensitivity troponin I test at the bedside, delivers accurate results in just 8 minutes (Photo courtesy of Siemens Healthineers)

New 8-Minute Blood Test to Diagnose or Rule Out Heart Attack Shortens ED Stay

Emergency department overcrowding is a significant global issue that leads to increased mortality and morbidity, with chest pain being one of the most common reasons for hospital admissions.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.