We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Fluorescent Dye Reveals Biochemical Conversations Between Cartilage and Bone in Early Osteoarthritis

By HospiMedica International staff writers
Posted on 08 Oct 2024
Print article
Image: Alizarin complexone via the intra-articular injection can enter different directions in the joint (Photo courtesy of FASEB BioAdvances; doi.org/10.1096/fba.2024-00103)
Image: Alizarin complexone via the intra-articular injection can enter different directions in the joint (Photo courtesy of FASEB BioAdvances; doi.org/10.1096/fba.2024-00103)

Osteoarthritis (OA) is a painful condition where the cartilage in a joint deteriorates, causing bone-on-bone contact. This articular cartilage also calcifies, turning into bone. The progressive condition is prevalent in individuals over 60, as well as those with certain metabolic disorders or who experience repetitive joint stress. Although there is no cure, early interventions may help slow further damage. However, detecting OA in its early stages, before the onset of pain, has been challenging. Now, researchers have discovered that a fluorescent dye might allow them to "listen" to biochemical interactions between cartilage and bone during the earliest stages of OA—even before pain begins. This unexpected discovery, made through research on mice, could pave the way for new treatments.

Researchers at Sidney Kimmel Medical College of Thomas Jefferson University (Philadelphia, PA, USA) investigated whether articular cartilage becomes calcified in the early stages of OA. They used a mouse model in which the right knee displays symptoms resembling those of human OA. The team injected a fluorescent red dye called alizarin complexone, which binds to calcium-containing crystals, into both knees. Surprisingly, they found no fluorescence on the surface of the articular cartilage, where they had expected to see early calcification. Instead, the dye stained the tidemark region, a boundary between the articular cartilage and the layer of calcified cartilage on the bone. The researchers also observed that the osteoarthritic mice had more alizarin dye in the calcified cartilage and subchondral bone compared to the controls. This increased dye diffusion suggests that the knee joint in early OA is more permeable than in normal joints.

When injected, the dye first enters the synovial fluid, which lubricates the joints. In additional experiments, the team found that the dye moved throughout the joint via three expected pathways. However, they also discovered a new pathway, through the tidemark, into the blood vessels in the outer bone layer, known as the periosteum. The fluorescence signal was stronger in the periosteum and subchondral bone of OA-affected joints compared to controls. These findings, published in FASEB BioAdvances, reveal that alizarin complexone can detect diffusion, or biochemical communication, between the articular cartilage, calcified cartilage, and subchondral bone. This diffusion is heightened in the early stages of OA. With this new tool, researchers can further explore OA progression, potentially leading to the development of novel treatments.

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Blood and Infusion Warmer
SW300
New
Diagnosis Display System
C1216W

Print article

Channels

Surgical Techniques

view channel
Image: Catheters coated with the new material showed a significant reduction in clotting on the device surface (Photo courtesy of UBC Faculty of Medicine)

Newly Developed Coating Makes Medical Devices Clot-Free

Thrombosis, or the formation of blood clots, presents a significant challenge for devices that come into contact with blood. Unlike natural blood vessels, these devices can activate specific proteins in... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.