We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Ingestible Capsule Pump Drugs Directly into Walls of GI Tract

By HospiMedica International staff writers
Posted on 21 Nov 2024
Print article
Image: The capsules have been designed so that they can target different parts of the digestive tract (Photo courtesy of MIT)
Image: The capsules have been designed so that they can target different parts of the digestive tract (Photo courtesy of MIT)

Drugs that consist of large proteins or RNA are generally not suitable for oral administration, as they are easily broken down in the digestive system. For several years, researchers at MIT (Cambridge, MA, USA) have been exploring methods to deliver these drugs orally by encasing them in small devices that protect them from degradation, delivering the drugs directly to the digestive tract lining. Most of these devices employ small needles or microneedles to inject drugs once the device reaches the digestive system. Now, the MIT researchers, along with collaborators from Brigham and Women’s Hospital (Boston, MA, USA) and Novo Nordisk (Bagsværd, Denmark), have developed a bioinspired capsule that can pump drugs directly into the walls of the GI tract. The needle-free device could be used to deliver insulin, antibodies, RNA, or other large molecules without causing any damage to the tissue.

Drawing inspiration from cephalopods, such as squids and octopuses, which use water jets to propel themselves through the water and create ink clouds to evade predators, the researchers developed an ingestible capsule that releases a burst of drugs directly into the stomach wall or other parts of the digestive tract. This innovative capsule could provide an alternative to injectable drugs, such as insulin, large proteins like antibodies, and even RNA therapies like vaccines or treatments for diseases such as diabetes, obesity, and other metabolic disorders. This needle-free strategy, detailed in a paper published in Nature, could revolutionize drug delivery.

The team designed two mechanisms to replicate the jetting action of squids and octopuses. These mechanisms use compressed carbon dioxide or tightly coiled springs to create the force needed to expel liquid drugs from the capsule. The gas or spring is kept compressed by a carbohydrate trigger, which dissolves when exposed to humidity or acidic conditions in the stomach. Once the trigger dissolves, the gas or spring is allowed to expand, propelling the drug out of the capsule. In experiments with digestive tract tissue, the researchers determined the necessary pressure to expel drugs with enough force to penetrate the submucosal tissue, creating a depot that would then gradually release the drugs.

The capsules have also been designed to target different sections of the digestive tract. One version, with a flat bottom and high dome, is intended for the stomach lining, where it sits and ejects the drug downward into the tissue. This capsule, about the size of a blueberry, holds 80 microliters of drug. Another version, shaped like a tube, aligns with longer organs such as the esophagus or small intestine, ejecting the drug toward the side wall. This version can deliver 200 microliters of drug. Made from metal and plastic, the capsules can pass through the digestive system and are excreted after delivering the drug.

In animal tests, the capsules successfully delivered insulin, a GLP-1 receptor agonist similar to the diabetes drug Ozempic, and short interfering RNA (siRNA), which can silence genes and is potentially useful for treating genetic disorders. The researchers found that the concentration of the drugs in the animals’ bloodstream was comparable to levels seen when the drugs were injected, and no tissue damage was observed. The team envisions the capsules being used by patients at home for frequent insulin or other injectable drug administration, offering a less invasive, more convenient alternative to injections. Additionally, this approach eliminates the need to dispose of sharp needles. The researchers also created a version of the device that can be attached to an endoscope, enabling doctors to administer drugs directly during endoscopies or surgeries. The team plans to further develop the capsules and hopes to begin testing them in humans soon.

“This technology is a significant leap forward in oral drug delivery of macromolecule drugs like insulin and GLP-1 agonists. While many approaches for oral drug delivery have been attempted in the past, they tend to be poorly efficient in achieving high bioavailability,” said Omid Veiseh, a professor of bioengineering at Rice University, who was not involved in the research. “Here, the researchers demonstrate the ability to deliver bioavailability in animal models with high efficiency. This is an exciting approach which could be impactful for many biologics which are currently administered through injections or intravascular infusions.”

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
12-Channel ECG
CM1200B
New
Phototherapy Eye Protector
EyeMax2
New
Documentation System For Blood Banks
HettInfo II

Print article

Channels

Surgical Techniques

view channel
Image: The Toumai system has successfully completed over 200 human robotic telesurgery cases globally (Photo courtesy of MicroPort Medbot)

Surgical Robot System with Telesurgery Capability to Revolutionize Healthcare Delivery

Robotic telesurgery, or remote surgery, is a technique where a surgeon operates on a patient from a distance using a robot and telecommunication networks. This approach allows surgeons to conduct procedures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.