Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Rapid and Inexpensive Paper-Based Test Simultaneously Quantifies Multiple Cardiac Biomarkers

By HospiMedica International staff writers
Posted on 02 May 2023

Centralized lab testing has long been the go-to method for diagnosing common illnesses. More...

However, this approach often necessitates costly medical equipment and complex procedures that can only be carried out by highly trained professionals within a medical facility. These factors prolong testing time and hinder the widespread application of diagnostics in remote and resource-poor areas due to limited access to central labs. In response to these challenges, point-of-care (POC) sensors were developed as alternative diagnostic tools, characterized by their simplicity, rapid operation, compact size, and affordability. The most prevalent type of POC tests are paper-based sensors, also known as lateral flow assays (LFAs), where the injected sample fluid flows horizontally and reacts with specific test regions (test lines) to generate, for instance, a color change. Despite their ease of use and cost-effectiveness, existing LFAs have certain drawbacks, such as lower sensitivity and challenges with multiplexed testing for disease biomarkers.

To address these shortcomings, researchers at University of California (UCLA, Los Angeles, CA, USA) have devised a novel paper-based biosensor that utilizes a fluorescent multiplexed vertical flow assay to rapidly and simultaneously measure three cardiac biomarkers from human serum samples. This new paper-based POC sensor's vertical flow design allows for multiple test regions with up to 100 individual test spots on a single disposable cartridge. The powerful sensor operates with just a small serum droplet and can be easily used by a minimally trained individual in under 15 minutes per patient. Along with its multiplexing capabilities, the paper-based sensor also boasts high sensitivity, achieving a detection limit better than ~0.5 ng/mL for each biomarker — less than one billionth of half a gram per milliliter of serum.

Additionally, the UCLA researchers have created a mobile phone-based, low-cost handheld fluorescence reader and a deep learning-assisted signal analysis pipeline to automatically and accurately quantify the three target biomarkers in a user-friendly manner. The team tested their paper-based multiplexed sensor for the quantification of three biomarkers of acute coronary syndrome (ACS), including myoglobin, creatine kinase-MB (CK-MB), and heart-type fatty acid binding protein (FABP). ACS is a cardiovascular condition that demands prompt diagnosis in emergency situations, and these target markers are released into the bloodstream shortly after symptom onset. The newly-developed paper-based sensor was evaluated on human serum samples, and the measured concentrations for all three cardiac biomarkers aligned well with the benchmark measurements obtained by a standard laboratory test. Given its accuracy, speed, user-friendliness, and affordability, this deep learning-enabled paper-based multiplexed sensor offers an attractive POC testing option for various applications in remote and resource-limited settings.

“Compared to a commonly used linear calibration method, our deep learning-based analysis benefits from the function approximation power of neural networks to learn non-trivial relationships between the multiplexed fluorescence signals from the paper-based sensor and the underlying analyte concentrations in serum,” said Artem Goncharov, a graduate student at UCLA Electrical & Computer Engineering Department. “As a result, we have accurate quantitative measurements for all three biomarkers of interest despite the background noise present in clinical serum samples.”

Related Links:
UCLA 


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Bipolar Coagulation Generator
Aesculap
Semi‑Automatic Defibrillator
Heart Save AED (ED300)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.