We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

CRISPR-Powered Method for Non-Invasive Blood Tests to Help Diagnose Early Stage Cancer

By HospiMedica International staff writers
Posted on 02 Jun 2023
Print article
Image: A portable smartphone-based POC device for use with EXTRA-CRISPR method for cancer diagnostics (Photo courtesy of UF Health)
Image: A portable smartphone-based POC device for use with EXTRA-CRISPR method for cancer diagnostics (Photo courtesy of UF Health)

MicroRNAs, tiny RNA molecules that regulate gene expression, have been identified as potential cancer biomarkers in human fluids like blood. Extracellular vesicles, tiny particles actively discharged by cells, transfer biomolecules between cells, influencing cell functions and diseases. Tumor cells tend to release these vesicles with disease-associated microRNAs more aggressively, making them a promising source for discovering new cancer markers. However, their clinical application has been constrained due to their complexity and the absence of a tool sensitive enough for their detection. Although CRISPR technology, a potent gene-editing tool, has been increasingly recognized as a potential platform for developing new disease diagnostics, earlier CRISPR tests were not as sensitive as the gold standard RT-qPCR and involved multistep reactions with manual handling. Now, a new approach, called “EXTRA-CRISPR,” could represent a game-changing method in the microRNA testing field.

A team of researchers from University of Florida (Gainesville, FL, USA) has developed an innovative CRISPR-based strategy for non-invasive blood tests that could assist clinicians in diagnosing cancer at earlier stages. The new method, which detects microRNAs in extracellular vesicles, is as effective as the widely used RT-qPCR assays for cancer diagnosis and can be combined with a simple portable device for point-of-care clinical testing. With the aim of streamlining the complete workflow into a 'one pot' setup, the researchers created a quick, sensitive method to detect microRNAs that is simpler and reduces the risk of cross-contamination. The term 'one pot' signifies that all necessary chemical agents, except for the sample, are housed in a single test tube, and only the microRNA sample needs to be added for a reaction to carry out the analysis.

The researchers decided to tailor this technology for pancreatic cancer due to the high mortality rate associated with the disease. They demonstrated that the novel one-pot assay could be adapted for two detection methods commonly used for point-of-care testing. Using readily available components, including a blue LED illuminator, a plastic filter, and a coffee mug warmer, they first prototyped a portable smartphone-based device. These components were assembled on a 3D-printed body part, and a smartphone was attached to capture fluorescence images of the test vials post-reaction to measure the target markers. Alongside the fluorescence detector, they paired the EXTRA-CRISPR assay with a commercially available lateral-flow test strip to create an instrument-free point-of-care device. Both point-of-care methods were tested for pancreatic cancer detection, and they delivered diagnostic results consistent with those obtained with a benchtop PCR machine. A patent application has been filed by the researchers based on this work to make the one-pot CRISPR assay and the point-of-care technology widely accessible for basic research and clinical application.

“Our method is very promising for diagnosis of cancer, such as pancreatic cancer, when combined with robust microRNA biomarkers and for point-of-care testing,” said He Yan, Ph.D., a postdoctoral researcher who was part of the team. “In the future, this method can be coupled with a very simple, low-cost portable device to make pancreatic cancer detection simpler but still reliable.”

Related Links:
University of Florida 

Platinum Supplier
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Supplier
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Interventional Robot
Extracorporeal Shock Wave Therapy Device
Aries 2

Print article


Critical Care

view channel
Image: Flexible thin-film electrodes placed directly on brain tissue have shown promise for diagnosis and treatment of epilepsy (Photo courtesy of Tokyo Tech)

Thin-Film Neural Electrodes Placed Directly on Brain Tissue Can Diagnose and Treat Epilepsy

Analyzing brain activity is crucial for diagnosing conditions like epilepsy and other mental health disorders. Among various methods, electroencephalography (EEG) is considered the least intrusive, using... Read more

Surgical Techniques

view channel
Image: The ARC-IM Stimulator with brain-computer interface restores arm, hand, and finger function after spinal cord injury (Photo courtesy of ONWARD Medical)

First-in-Human Implant of Thought-Driven Movement Device to Treat Spinal Cord Injury

In order to walk, signals from the brain are sent to neurons in the lumbosacral part of the spinal cord. When a spinal cord injury occurs, it cuts off this essential communication between the brain and... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The broad-spectrum POC coagulometer is well-suited for emergency room and emergency vehicle use (Photo courtesy of Perosphere)

Novel POC Coagulometer with Lab-Like Precision to Revolutionize Coagulation Testing

In emergency settings, when patients arrive with a bleed or require urgent surgery, doctors rely solely on clinical judgment to determine if a patient is adequately anticoagulated for reversal treatment.... Read more


view channel
Image: The global surgical lights market is expected to grow by close to USD 0.50 billion from 2022 to 2027 (Photo courtesy of Freepik)

Global Surgical Lights Market Driven by Increasing Number of Procedures

The global surgical lights market is set to witness high growth, largely due to the increasing incidence of chronic illnesses, a surge in demand for cosmetic and plastic surgeries, and untapped opportunities... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.