We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




AI-Based Method Predicts Atrial Fibrillation Risk Based on ECG Results

By HospiMedica International staff writers
Posted on 24 Nov 2021
Print article
Illustration
Illustration

Investigators have developed and tested an artificial intelligence (AI)-based method for predicting an individual’s five-year risk of developing atrial fibrillation, or an irregular heartbeat, from electrocardiogram results.

The method developed by researchers at the Massachusetts General Hospital (MIG; Boston, MA, USA) could be used to identify patients who might benefit from preventative measures. Atrial fibrillation—an irregular and often rapid heart rate—is a common condition that often leads to the formation of clots in the heart that can travel to the brain to cause a stroke. MIG researchers developed the AI-based method to predict the risk of atrial fibrillation within the next five years based on results from electrocardiograms (non-invasive tests that record the electrical signals of the heart) in 45,770 patients receiving primary care at MGH.

Next, the scientists applied their method to three large data sets from studies including a total of 83,162 individuals. The AI-based method predicted atrial fibrillation risk on its own and was synergistic when combined with known clinical risk factors for predicting atrial fibrillation. The method was also highly predictive in subsets of individuals such as those with prior heart failure or stroke. The algorithm could serve as a form of pre-screening tool for patients who may currently be experiencing undetected atrial fibrillation, prompting clinicians to search for atrial fibrillation using longer-term cardiac rhythm monitors, which could in turn lead to stroke prevention measures. The study’s findings also demonstrate the potential power of AI—which in this case involve a specific type called machine learning—to advance medicine.

“We see a role for electrocardiogram-based artificial intelligence algorithms to assist with the identification of individuals at greatest risk for atrial fibrillation,” said senior author Steven A. Lubitz, MD, MPH, a cardiac electrophysiologist at MGH and associate member at the Broad Institute.

“The application of such algorithms could prompt clinicians to modify important risk factors for atrial fibrillation that may reduce the risk of developing the disease altogether,” added co–lead author Shaan Khurshid, MD, MPH, an electrophysiology clinical and research fellow at MGH.

Related Links:
Massachusetts General Hospital

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Surgical Monitor
LMD-1530MD
New
3T MRI Scanner
MAGNETOM Cima.X

Print article
Radcal

Channels

Critical Care

view channel
mage: The electroceutical epidermal patch is designed to inhibit bacterial growth (Photo courtesy of Saehyun Kim/University of Chicago)

Cutting-Edge Bioelectronic Device Offers Drug-Free Approach to Managing Bacterial Infections

Antibiotic-resistant infections pose an increasing threat to patient safety and healthcare systems worldwide. Recent estimates indicate that drug-resistant infections may rise by 70% by 2050, highlighting... Read more

Surgical Techniques

view channel
Image: Conceptual schematic showing microgrippers (µ-grippers) operating as biopsy tools in the upper urinary tract (Photo courtesy of Wangqu Liu, Yan Wan/Gracias Lab, Johns Hopkins University)

Microgrippers For Miniature Biopsies to Create New Cancer Diagnostic Screening Paradigm

The standard diagnosis of upper urinary tract cancers typically involves the removal of suspicious tissue using forceps, a procedure that is technically challenging and samples only a single region of the organ.... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.