We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Hi-Fidelity Catheter Measures Respiratory Parameters

By HospiMedica International staff writers
Posted on 11 Dec 2018
Print article
Image: The Mikro-Cath catheter measures airway and intra-compartmental pressures (Photo courtesy of Millar).
Image: The Mikro-Cath catheter measures airway and intra-compartmental pressures (Photo courtesy of Millar).
An innovative catheter-based sensor provides reliable, high-fidelity respiratory pressure data unaffected by patient movement or position.

The Millar (Houston, TX, USA) Mikro-Cath pressure catheter is a 3.5 F disposable diagnostic device for the measurement of cardiovascular, intra-compartmental, and airway pressures in the human body. A pressure sensor, mounted at the distal tip of the catheter, sends an electrical output signal--which varies in direct proportion to the magnitude of a sensed pressure--to a connector at the proximal end. The continuous monitoring of both airway and intra-compartmental pressures can be used to accurately diagnose acute compartment syndrome (ACS).

Originally designed as a cardiovascular device, Mikro-Cath also provides reliable signals for advanced cardiac applications, including exercise studies, drug therapy evaluation, heart failure cases, and left ventricular assist device (LVAD) evaluation. Hemodynamic measurements available for cardiac applications include left ventricular pressures (LVP), right ventricular pressures (RVP), mean arterial pressures (MAP), valve gradients, radial artery pressures, and peripheral lesion pressure gradients.

“Since 1969, Millar has led the development of catheter-based, solid-state pressure sensors that deliver the most reliable measurement of physiologic pressures, and have been used to advance medical research and device development in cardiovascular, urodynamic, neurosurgical care, and orthopedic applications,” said the company in a press statement. “Millar delivers precision catheter-based technology to measure high-fidelity physiological parameters for improved accuracy in patient evaluation.”

ACS is a painful condition caused by an increase in interstitial pressure within a closed osteofascial compartment, which impairs local circulation. It usually develops after a severe injury such as fractures or crush injury, but can also occurs after a relatively minor injury. Diagnosing ACS is difficult in clinical practice, even among expert surgeons. Currently, the diagnosis is made on the basis of physical examination and repeated intra-compartmental pressures; a measurement higher than 30 mmHg is indicative of compartment syndrome.

Related Links:
Millar

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Intraventricular Neuroendosopic System
MINOP

Print article

Channels

Surgical Techniques

view channel
Image: The Early Bird Bleed Monitoring System provides visual and audible indicators of the onset and progression of bleeding events (Photo courtesy of Saranas)

Novel Technology Monitors and Lowers Bleeding Complications in Patients Undergoing Heart Procedures

Bleeding complications at the femoral access site can significantly hamper recovery, affecting the success of procedures, patient satisfaction, and overall healthcare costs. It is crucial for surgeons... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.