We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Wearable EEG Patch Measures Brain Activity and Other Health Indicators for Early Disease Diagnosis

By HospiMedica International staff writers
Posted on 27 Oct 2022
Print article
Image: Image of dry-type bioelectrode and thin-film sensor sheet (Photo courtesy of Osaka University)
Image: Image of dry-type bioelectrode and thin-film sensor sheet (Photo courtesy of Osaka University)

Brain activity has traditionally been assessed using large and often expensive technology that has limited its use to specific clinical settings. Small wearable devices that can assess brain activity are hoped to improve the diagnosis and monitoring of brain diseases like dementia or depression. However, unlike other health-related measurements that can be taken at home, such as blood pressure or weight, brain activity currently needs to be evaluated by highly trained medical staff using bulky and expensive equipment. Thus, scans tend to be infrequent, and changes are often not immediately noted or treated. To combat these problems, the development of small wearable devices using electroencephalography - where electrodes measure electrical activity on the scalp as an estimate of the underlying brain activity - has recently begun. However, such devices are usually painful when worn long-term and often have low signal-to-noise ratios, which limits their sensitivity.

Researchers at Osaka University (Suita, Japan) have now developed a wearable device that is unobtrusive and comfortable, which can measure brain activity in everyday situations - and its technology may potentially monitor many other health indicators as well. The performance of their device was so good that the researchers were able to conduct sleep-stage classification, which requires very clear brain activity readings. Another highlight of the device was its stickiness - it remained in place during a range of different activities during the testing process, although the research team admits they still need to work on its adhesion during activities that cause a lot of sweating. Given the current demand for imperceptible, wearable health sensors, the development of this new device has huge clinical and commercial potential. By measuring brain activity and other health-related factors in daily life, diseases are much more likely to be diagnosed and treated earlier, leading to positive health outcomes for millions of people worldwide.

“We were able to fuse together organic and inorganic materials to create a stretchable and transparent sensor sheet that can be worn on the forehead, is gentle to the skin, and is invisible to the eye,” said Teppei Araki, lead author of the study. “Unlike conventional wearable devices, our multifunctional electrode system has medical device-like performance, is easy to apply, and is comfortable to wear for long periods of time.”

“One other key advantage of our sensor sheet is its range of possible applications,” added Tsuyoshi Sekitani, senior author of the study. “It can potentially be used to remotely assess many other health indicators, such as electrocardiograms, pulse waves, blood oxygen saturation, or blood flow.”

Related Links:
Osaka University 

Gold Member
12-Channel ECG
CM1200B
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Radial Shock Wave Device
MASTERPULS »ultra«

Print article

Channels

Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.