We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
16 Feb 2023 - 18 Feb 2023

Sugar-Based Stents Facilitate Vascular Anastomosis

By HospiMedica International staff writers
Posted on 30 Jan 2019
Print article
Image: A spiral-shaped printed stent helps surgeons stich arteries back together (Photo courtesy of UNL).
Image: A spiral-shaped printed stent helps surgeons stich arteries back together (Photo courtesy of UNL).
A new study describes how dissolvable sugar‐based stents can be fabricated using additive printing to help surgeons improve microvascular anastomosis.

Developed by researchers at the University of Nebraska (UNL; Lincoln, USA), Brigham and Women’s Hospital (BWH; Boston, MA, USA), Shiraz University (Iran), and other institutions, the 3D printed, sugar‐based stents are designed to hold the blood vessels together during the anastomosis suturing procedure, dissolving upon restoration of the blood flow. The dissolution rate and the mechanical properties of the dissolvable stents can be tailored between four and eight minutes.

To enable manufacture of stents with desirable geometries and dimensions, the researchers developed a molten sugary ink that is fluid enough to print, but viscous enough to solidify in minutes. Dextran, a glucose derivative, provides the necessary flexibility, so that the stent is not brittle; glucose is used to provide the adhesive properties that bind the stent to the arteries; and a combination of sucrose and sodium citrate help combat blood clotting. Once printed, the sugar-based concoction is baked until most of the water evaporated.

For the study, the researchers experimented with transparent tubing and pig arteries, showing that the stent erodes quickly but steadily when subjected to the flow rate, temperature, and salinity, of human arteries. The suturing held up with no signs of leakage immediately following the surgical procedure. The researchers plan to test the stent's use in live animal arteries, and envision a future in which such stents are printed on site at hospitals within minutes to meet the needs of individual patients. The study was published in the December 2018 issue of Advanced Healthcare Materials.

“The small sugar-based tube fits inside the adjacent ends of a clipped artery. By sticking to the interiors, the stent holds those ends in place and provides structural support during the precarious sewing process,” explained corresponding author mechanical engineer Ali Tamayol, PhD, of UNL. “The stent also reduces the risk of a surgeon mistakenly threading through both the top and bottom walls of an artery, which blocks subsequent blood flow. Sugar is bad; but here we found an application in which it's good.”

Successful microvascular anastomosis depends upon magnification, special instrumentation and fine suture materials, and the surgeon's skill. The key points of one-millimeter vessel anastomosis are the wall-to-wall coaptation of the vessel ends and a low number of interrupted stitches with relatively loose knot. To gain good coaptation, an oblique insertion of a needle through the vessel wall must be used. In a thin-walled vein repair, the lumen should always be kept open with frequent irrigations.

Related Links:
University of Nebraska
Brigham and Women’s Hospital
Shiraz University

Gold Supplier
Premium Ultrasound Scanner
Orthopedic Table
GS GS-HV Series
Blood Warmer
Ceiling-Mounted Digital X-Ray System
DigitalDiagnost C50

Print article



view channel
Image: A novel research study moves the needle on predicting coronary artery disease (Photo courtesy of Pexels)

AI-Enabled ECG Analysis Predicts Heart Attack Risk Nearly as well as CT Scans

Increased coronary artery calcium is a marker of coronary artery disease that can lead to a heart attack. Traditionally, CT scans are used to diagnose buildup of coronary artery calcium, although CT scanners... Read more

Critical Care

view channel
Image: The advanced electronic skin could enable multiplex healthcare monitoring (Photo courtesy of Terasaki Institute)

First-of-Its-Kind Electronic Skin Patch Enables Advanced Health Care Monitoring

For some time now, electronic skin (E-skin) patches have been used to monitor bodily physiological and chemical indicators of health. Such monitors, placed on the skin, are capable of measuring various... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Point of Care

view channel
Image: Steripath improves the diagnostic accuracy and timeliness of sepsis test results (Photo courtesy of Magnolia)

All-in-One Device Reduces False-Positive Diagnostic Test Results for Bloodstream Infections

Blood cultures are considered the gold standard diagnostic test for the detection of blood stream infections, such as sepsis. However, positive blood culture results can be frequently wrong, and about... Read more


view channel
Image: Researchers expect broader adoption of AI in healthcare in the near future (Photo courtesy of Pexels)

Artificial Intelligence (AI) Could Save U.S. Healthcare Industry USD 360 Billion Annually

The wider adoption of artificial intelligence (AI) in healthcare could save the U.S. up to USD 360 billion annually although its uptake in the industry is presently limited owing to the absence of trust... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.