We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Smartphone App Detects Pediatric Middle Ear Infections

By HospiMedica International staff writers
Posted on 06 Jun 2019
Print article
Image: Dr. Randall Bly of Seattle Children\'s Hospital checking his daughter\'s ear (Photo courtesy of Dennis Wise/ UW).
Image: Dr. Randall Bly of Seattle Children\'s Hospital checking his daughter\'s ear (Photo courtesy of Dennis Wise/ UW).
A novel application detects middle ear fluids using the speaker of a smartphone to emit sound and the microphone to analyze its echo from the eardrum.

Developed at the University of Washington (UW; Seattle, USA) and Seattle Children’s Hospital and Research Institute (WA, USA), the app is designed to assess eardrum mobility by directing a continuous 150-millisecond soundwave into the ear using a paper funnel that rests on the outer ear. The funnel guides sound waves in and out of the ear canal to measure how they bounce off the eardrum. The sound, which resembles a bird chirping, is picked up by the smartphone's microphone along with the original chirps; the interference between the two sounds is modulated by the presence of fluid in the middle ear.

In a proof-of-concept study involving 98 pediatric patient ears, the smartphone system outperformed a commercial acoustic reflectometry system, detecting middle ear infections with a probability of 85%. In another study, the researchers tested the algorithm on 15 ears belonging to younger children between nine and 18 months of age. It correctly classified all five ears that were positive for fluid and nine out of the 10 ears (90%) that did not have fluid in them. The system can be easily operated by parents without formal medical training. The study was published on May 15, 2019, in Science Translational Medicine.

“Designing an accurate screening tool on something as ubiquitous as a smartphone can be game changing for parents as well as health care providers in resource limited regions,” said study co-author Shyam Gollakota, PhD, an associate professor in the UW School of Computer Science & Engineering. “A key advantage of our technology is that it does not require any additional hardware, other than a piece of paper and a software app running on the smartphone.”

“Fluid behind the eardrum is so common in children that there's a direct need for an accessible and accurate screening tool that can be used at home or clinical settings,” said study co-lead author Sharat Raju, MD, a resident in otolaryngology-head and neck surgery at the UW School of Medicine. “If parents could use a piece of hardware they already have to do a quick physical exam that can say ‘your child most likely doesn't have ear fluid’ or ‘your child likely has ear fluid, you should make an appointment with your pediatrician,’ that would be huge.”

Otitis media with effusion (OME) is characterized by a nonpurulent fluid effusion of the middle ear that may be either mucoid or serous. Symptoms usually involve hearing loss or aural fullness but typically do not involve pain or fever. In children, hearing loss is generally mild and is often detected only with an audiogram. In general, inpatient care for OME is not required unless complications that threaten the stability of the patient's condition are suspected.

Related Links:
University of Washington
Seattle Children’s Hospital and Research Institute

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Diagnosis Display System
C1216W
New
4K Ultra-HD Fluorescence Imaging Camera
SV-M4K40

Print article
Radcal

Channels

Critical Care

view channel
mage: The electroceutical epidermal patch is designed to inhibit bacterial growth (Photo courtesy of Saehyun Kim/University of Chicago)

Cutting-Edge Bioelectronic Device Offers Drug-Free Approach to Managing Bacterial Infections

Antibiotic-resistant infections pose an increasing threat to patient safety and healthcare systems worldwide. Recent estimates indicate that drug-resistant infections may rise by 70% by 2050, highlighting... Read more

Surgical Techniques

view channel
Image: Conceptual schematic showing microgrippers (µ-grippers) operating as biopsy tools in the upper urinary tract (Photo courtesy of Wangqu Liu, Yan Wan/Gracias Lab, Johns Hopkins University)

Microgrippers For Miniature Biopsies to Create New Cancer Diagnostic Screening Paradigm

The standard diagnosis of upper urinary tract cancers typically involves the removal of suspicious tissue using forceps, a procedure that is technically challenging and samples only a single region of the organ.... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.