We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Machine Learning Model Accurately Identifies High-Risk Surgical Patients

By HospiMedica International staff writers
Posted on 18 Jul 2023
Print article
Image: Accurate and flexible ML model predicts patients at high-risk for complications after surgery (Photo courtesy of Freepik)
Image: Accurate and flexible ML model predicts patients at high-risk for complications after surgery (Photo courtesy of Freepik)

Prior to the COVID-19 pandemic, complications occurring 30 days post-surgery were the third leading cause of death worldwide, claiming approximately 4.2 million lives annually. Recognizing patients at high risk for post-surgical complications is crucial to improving survival rates and reducing healthcare costs. Researchers have now employed machine learning to develop and implement an efficient, adaptable model for identifying hospitalized patients at high risk for post-surgical complications.

Researchers and physicians at the University of Pittsburgh (Pittsburgh, PA, USA) and UPMC (Pittsburgh, PA, USA) developed this model by training the algorithm on the medical records of over 1.25 million surgical patients. The focus of the model was on mortality and the occurrence of major cerebral or cardiac events, such as stroke or heart attack, following surgery. The model was then validated using the records of another 200,000 surgical patients from UPMC. After validation, the model was implemented across 20 UPMC hospitals. Each morning, the program reviews the electronic medical records of patients scheduled for surgery and flags those identified as high risk. This alert enables clinical teams to improve care coordination and introduce prehabilitation measures before surgery, such as healthier lifestyle choices or a referral to the UPMC Center for Perioperative Care, thus lowering the risk of complications. Clinicians can also activate the model on demand at any time.

Additionally, the research team compared their model with the industry standard, the American College of Surgeon’s National Surgical Quality Improvement Program (ACS NSQIP), to further gauge its effectiveness. The ACS NSQIP, used at hospitals nationwide, requires manual input of patient information by clinicians and is unable to make predictions if data is missing. The researchers found their model to be more effective at identifying high-risk patients than the ACS NSQIP. As the model continues to be fine-tuned and developed, the researchers plan to train the program to predict the likelihood of other complications, such as sepsis and respiratory issues, that often result in prolonged hospital stays after surgery.

“We designed our model with the health care worker in mind,” said Aman Mahajan, M.D., Ph.D., M.B.A., chair of Anesthesiology and Perioperative Medicine, Pitt School of Medicine, and director of UPMC Perioperative and Surgical Services. “Since our model is completely automated and can make educated predictions even if some data are missing, it adds almost no additional burden to clinicians while providing them a reliable and useful tool.”

Related Links:
University of Pittsburgh 
UPMC 

Platinum Supplier
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Supplier
128 Slice CT Scanner
Supria 128
New
LED Light System
LUVIS-M210
New
X-Ray Generator
RF Series

Print article
Radcal

Channels

Surgical Techniques

view channel
Image: The ARC-IM Stimulator with brain-computer interface restores arm, hand, and finger function after spinal cord injury (Photo courtesy of ONWARD Medical)

First-in-Human Implant of Thought-Driven Movement Device to Treat Spinal Cord Injury

In order to walk, signals from the brain are sent to neurons in the lumbosacral part of the spinal cord. When a spinal cord injury occurs, it cuts off this essential communication between the brain and... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The broad-spectrum POC coagulometer is well-suited for emergency room and emergency vehicle use (Photo courtesy of Perosphere)

Novel POC Coagulometer with Lab-Like Precision to Revolutionize Coagulation Testing

In emergency settings, when patients arrive with a bleed or require urgent surgery, doctors rely solely on clinical judgment to determine if a patient is adequately anticoagulated for reversal treatment.... Read more

Business

view channel
Image: The global surgical lights market is expected to grow by close to USD 0.50 billion from 2022 to 2027 (Photo courtesy of Freepik)

Global Surgical Lights Market Driven by Increasing Number of Procedures

The global surgical lights market is set to witness high growth, largely due to the increasing incidence of chronic illnesses, a surge in demand for cosmetic and plastic surgeries, and untapped opportunities... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.