We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Tiny Wraparound Electronic Implants to Revolutionize Treatment of Spinal Cord Injuries

By HospiMedica International staff writers
Posted on 10 May 2024
Print article
Image: ‘Wraparound’ implants represent a new approach to treating spinal cord injuries (Photo courtesy of 123RF)
Image: ‘Wraparound’ implants represent a new approach to treating spinal cord injuries (Photo courtesy of 123RF)

The spinal cord functions as a vital conduit, transmitting nerve impulses to and from the brain, much like a highway. When the spinal cord is damaged, this flow of information is disrupted, leading to severe disabilities, including the irreversible loss of sensory and motor functions. Traditional methods for treating spinal injuries typically involve inserting electrodes into the spinal cord and implanting devices in the brain, both of which are procedures with high risks. Now, a tiny, flexible electronic device that wraps around the spinal cord offers a potentially safer alternative for treating spinal injuries.

The novel device developed by a team of engineers, neuroscientists, and surgeons from the University of Cambridge (Cambridge, UK) was utilized to capture nerve signals transmitted between the brain and the spinal cord. In contrast to existing technologies, the Cambridge device can record 360-degree information of the spinal cord, providing a comprehensive view of its activity. Drawing on advances in microelectronics, the team devised a method to access data across the entire spinal cord by wrapping very thin, high-resolution implants around the spinal cord’s circumference. This breakthrough marks the first successful attempt at safe, 360-degree monitoring of the spinal cord, a significant improvement over previous methods that involved piercing the spinal cord with electrodes, which posed a risk of injury.

Developed using sophisticated photolithography and thin film deposition, the Cambridge devices are biocompatible and extremely thin, measuring just a few millionths of a meter in thickness, and they operate on minimal power. These devices function by intercepting signals from the axons or nerve fibers within the spinal cord, enabling precise recording of these signals. Due to their slim profile, the devices can perform this function without harming the nerve tissues, as they do not penetrate the spinal cord. The devices were inserted using a modified standard surgical procedure, allowing them to be positioned beneath the spinal cord without causing any damage. In experimental trials involving rats, the devices were effectively used to initiate limb movement and demonstrated very low latency, comparable to human reflexive responses. Further testing with human cadaver models confirmed that these devices could be successfully implanted in humans.

The researchers believe their approach could significantly change the treatment of spinal injuries in the future. While current treatments often require implants in both the brain and spinal cord, the Cambridge team suggests that brain implants might not be necessary. Although a definitive treatment for spinal injuries may still be several years away, these devices could soon provide valuable insights for researchers and surgeons, offering a non-invasive method to study a critical yet underexplored part of human anatomy. The Cambridge team is currently planning further applications of the devices, aiming to monitor nerve activity in the spinal cord during surgical procedures.

“It’s been almost impossible to study the whole of the spinal cord directly in a human, because it’s so delicate and complex,” said Dr. Damiano Barone from the Department of Clinical Neurosciences, who co-led the research. “Monitoring during surgery will help us to understand the spinal cord better without damaging it, which in turn will help us develop better therapies for conditions like chronic pain, hypertension or inflammation. This approach shows enormous potential for helping patients.”

Related Links:
University of Cambridge

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Prenatal Risk Calculation System
PRISCA
New
5-Drawer Tall Anesthesia Cart
UTGKU-33669-DKB

Print article
Radcal

Channels

Critical Care

view channel
mage: The electroceutical epidermal patch is designed to inhibit bacterial growth (Photo courtesy of Saehyun Kim/University of Chicago)

Cutting-Edge Bioelectronic Device Offers Drug-Free Approach to Managing Bacterial Infections

Antibiotic-resistant infections pose an increasing threat to patient safety and healthcare systems worldwide. Recent estimates indicate that drug-resistant infections may rise by 70% by 2050, highlighting... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.