We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Hybrid Grafts to Combat Cardiovascular Disease

By HospiMedica International staff writers
Posted on 26 Aug 2024
Print article
Image: The multicomponent vascular graft overcomes the limitations of autologous/synthetic vascular grafts (Photo courtesy of Trinity College Dublin)
Image: The multicomponent vascular graft overcomes the limitations of autologous/synthetic vascular grafts (Photo courtesy of Trinity College Dublin)

Cardiovascular disease (CVD) remains a leading health concern, often requiring vascular grafts for treatment. These grafts, however, frequently encounter complications such as compliance mismatch and clot formation, particularly when used in small-diameter applications. To address this, researchers have developed a multicomponent vascular graft that mimics the native architecture of blood vessels, aiming to enhance the regeneration of damaged tissue.

Researchers from Trinity College Dublin (Dublin, Ireland), as reported in the international journal Advanced Functional Materials, employed a Melt electrowriting (MEW) technique to create this advanced vascular graft. This method allows for the fabrication of tubular scaffolds that not only exhibit vascular-mimetic fiber architecture and mechanics but are also integrated with a lyophilized fibrinogen matrix, designed to degrade at a controlled rate. This hybrid graft aligns with ISO implantability standards, matches the compliance of natural vessels, and has been shown to support physiological flow while minimizing clot formation in preclinical models.

In practice, the graft was successfully implemented as a replacement for the abdominal aorta in rat models, where it demonstrated excellent blood compatibility by reducing platelet and red blood cell infiltration. This breakthrough introduces a promising off-the-shelf solution for small-diameter vascular grafts needed in CVD treatment. Additionally, the innovation supports the broader development of 3D bio printed biological implants aimed at regenerating, rather than merely replacing, diseased tissues and joints.

“We developed a novel multicomponent vascular graft that was inspired by the layered architecture of native blood vessels,” said Associate Professor David Hoey, lead investigator and study author. “Utilizing advanced biofabrication technologies such as melt electrowriting (MEW) we could produce tubular scaffolds, that when combined with a fibrinogen matrix, could not only replicate the behavior of a blood vessel but could also act as a guiding structure to regenerate damaged tissue. This exciting off-the-shelf graft meets clinical requirements and is therefore a promising solution for addressing the unmet need for small-diameter vascular grafts.”

Related Links:
Trinity College Dublin

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Vital Signs Monitor
Vista 120 SC
New
3-Channel ECG
ECG-1003p

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.