We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Deep Learning-Based System Detects Lesions in Knee MR Images

By HospiMedica International staff writers
Posted on 10 Aug 2018
Print article
Image: Researchers have developed a deep learning–based system for cartilage lesion detection in knee MR images (Photo courtesy of Health Imaging).
Image: Researchers have developed a deep learning–based system for cartilage lesion detection in knee MR images (Photo courtesy of Health Imaging).
Researchers from the department of radiology at the University of Wisconsin School of Medicine and Public Health (Madison, Wisconsin, USA) have developed a deep learning approach to detect cartilage lesions by evaluating MR images of the knee. The researchers used segmentation and classification convolutional neural networks (CNNs) to develop the fully automated deep learning–based cartilage lesion detection system.

According to the study published in Radiology, the deep learning method was used to retrospectively analyze fat-suppressed T2-weighted fast spin-echo MRI data sets of the knee of 175 patients with knee pain. The reference standard for training the CNN classification was the interpretation provided by a fellowship-trained musculoskeletal radiologist of the presence or absence of a cartilage lesion within 17,395 small image patches placed on the articular surfaces of the femur and tibia.

In two individual evaluations of the system for the study, the researchers observed a sensitivity of 84.1% and a specificity of 85.2% for evaluation 1, as compared to 80.5% and 87.9%, respectively for evaluation 2. Areas under the ROC curve were 0.917 and 0.914 for evaluations 1 and 2, respectively, indicating high overall diagnostic accuracy for detecting cartilage lesions.

The researchers concluded that the study demonstrated the feasibility of using a fully automated deep learning–based cartilage lesion detection system to evaluate the articular cartilage of the knee joint with high diagnostic performance and that there was good intra-observer agreement for detecting cartilage degeneration and acute cartilage injury.

Related Links:
University of Wisconsin School of Medicine and Public Health

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Display
i3 Series

Print article

Channels

Surgical Techniques

view channel
Image: LUMISIGHT and Lumicell DVS offer 84% diagnostic accuracy in detecting residual cancer (Photo courtesy of Lumicell)

Cutting-Edge Imaging Platform Detects Residual Breast Cancer Missed During Lumpectomy Surgery

Breast cancer is becoming increasingly common, with statistics indicating that 1 in 8 women will develop the disease in their lifetime. Lumpectomy remains the predominant surgical intervention for treating... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.