We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Groundbreaking AI-Based Method Accurately Classifies Cardiac Function and Disease Using Chest X-Rays

By HospiMedica International staff writers
Posted on 07 Jul 2023
Print article
Image: An artificial intelligence-based model classifies cardiac functions from chest radiographs (Photo courtesy of Osaka Metropolitan University)
Image: An artificial intelligence-based model classifies cardiac functions from chest radiographs (Photo courtesy of Osaka Metropolitan University)

Valvular heart disease, a leading cause of heart failure, is commonly diagnosed using echocardiography. However, this technique demands specialized expertise, leading to a shortage of proficient technicians. Chest radiography, on the other hand, is a widely used diagnostic method for identifying primarily lung diseases. Even though the heart is visible in chest radiographs or chest X-rays, its potential to detect cardiac function or disease has been largely unexplored until now. Given their widespread use, rapid execution, and high reproducibility, chest X-rays could serve as a supplementary tool to echocardiography for diagnosing cardiac conditions if they could accurately determine cardiac function and disease. Now, an innovative artificial intelligence (AI) tool uses chest X-rays to classify cardiac functions and identify valvular heart disease with unprecedented accuracy.

Scientists at Osaka Metropolitan University (Osaka, Japan) have developed an AI-based model capable of accurately classifying cardiac functions and diagnosing valvular heart diseases using chest X-rays. Given the potential for bias and resultant low accuracy if AI is trained on a single dataset, the team collected a multi-institutional dataset comprising 22,551 chest X-rays and corresponding echocardiograms from 16,946 patients across four facilities between 2013 and 2021. The AI model was trained using chest X-rays as input data and the corresponding echocardiograms as output data, enabling it to learn the features connecting the two datasets.

The AI model succeeded in precisely classifying six selected types of valvular heart disease, with the Area Under the Curve (AUC is a rating index denoting an AI model's capability with a value range from 0 to 1—the closer to 1, the better) ranging from 0.83 to 0.92. The AUC was 0.92 at a 40% cut-off for detecting left ventricular ejection fraction—an essential metric for monitoring cardiac function.

“It took us a very long time to get to these results, but I believe this is significant research,” stated Dr. Daiju Ueda from Osaka Metropolitan University who led the research team. “In addition to improving the efficiency of doctors’ diagnoses, the system might also be used in areas where there are no specialists, in night-time emergencies, and for patients who have difficulty undergoing echocardiography.”

Related Links:
Osaka Metropolitan University 

Platinum Supplier
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Gold Supplier
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Extracorporeal Shock Wave Therapy Device
Aries 2
New
Gold Supplier
Calibration Syringe
Calibration Syringes

Print article
Radcal

Channels

Critical Care

view channel
Image: Flexible thin-film electrodes placed directly on brain tissue have shown promise for diagnosis and treatment of epilepsy (Photo courtesy of Tokyo Tech)

Thin-Film Neural Electrodes Placed Directly on Brain Tissue Can Diagnose and Treat Epilepsy

Analyzing brain activity is crucial for diagnosing conditions like epilepsy and other mental health disorders. Among various methods, electroencephalography (EEG) is considered the least intrusive, using... Read more

Surgical Techniques

view channel
Image: The Canady Robotic AI Surgical System (Photo courtesy of JCRI-ABTS)

AI Robotic System Selectively Kills Microscopic Tumor Cells without Damaging Surrounding Tissue

When treating cancer, surgeons usually aim to remove the tumor along with a surrounding "margin" of healthy tissue to make sure all cancer cells have been taken out. However, even with advancements in... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The broad-spectrum POC coagulometer is well-suited for emergency room and emergency vehicle use (Photo courtesy of Perosphere)

Novel POC Coagulometer with Lab-Like Precision to Revolutionize Coagulation Testing

In emergency settings, when patients arrive with a bleed or require urgent surgery, doctors rely solely on clinical judgment to determine if a patient is adequately anticoagulated for reversal treatment.... Read more

Business

view channel
Image: The global surgical lights market is expected to grow by close to USD 0.50 billion from 2022 to 2027 (Photo courtesy of Freepik)

Global Surgical Lights Market Driven by Increasing Number of Procedures

The global surgical lights market is set to witness high growth, largely due to the increasing incidence of chronic illnesses, a surge in demand for cosmetic and plastic surgeries, and untapped opportunities... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.