We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Brain Stethoscope Detects Silent Epileptic Seizures

By HospiMedica International staff writers
Posted on 02 Apr 2018
Print article
Image: Professor Josef Parvizi listening to a sonified EEG (Photo courtesy of Stanford University).
Image: Professor Josef Parvizi listening to a sonified EEG (Photo courtesy of Stanford University).
A new study confirms that sonification of electroencephalograms (EEGs) can aid rapid assessment of patients with suspected subclinical seizures, even by laymen.

Researchers at Stanford University School of Medicine (CA, USA) have developed a novel method to interpret EEG data by converting the wave signal into sound in real time. The technique involves modulation of the underlying electrophysiological signal into a voice tone that is in the audible range. To test the new method, the researchers conducted a study involving 34 medical students and 30 nurses, all without any prior EEG training, who listened to a 15-second sonified EEG and then attempted to determine if it represents seizure or nonseizure conditions.

The researchers selected 84 EEG samples, of which seven represent seizures, 25 represented seizure-like activity, and 52 represented normal nonperiodic, nonrhythmic activity. Single channels EEGs from the left and right hemispheres were then converted to sound files. After a four-minute training video, study participants were asked to designate each audio sample as seizure or nonseizure. Their performance was then compared to that of 12 EEG-trained neurologists and 29 medical students who diagnosed the same EEGs on a visual display.

The results revealed that the non-experts listening to single-channel sonified EEGs detected seizures with a higher sensitivity (students, 98%; nurses, 95%) than experts or nonexperts reviewing the same EEGs on the visual display (neurologists, 88%; students, 76%). In addition, if the EEGs contained seizures or seizure-like activity, the nonexperts listening to the sonified EEGs rated them as such with high specificity (students, 85%; nurses, 82%), close to that of experts or nonexperts viewing the EEGs visually (neurologists, 90%; students, 65%). The study was published on March 20, 2018, in Epilepsia.

“You might think that all seizures must cause some sort of convulsions, namely a patient who's having a seizure must fall down and shake on the ground. But that's actually not the case, especially in critically ill patients in the intensive care units; close to 90% of those patients will have silent seizures,” said lead author Professor Josef Parvizi, MD, PhD, of the department of neurology. “This technology will enable nurses, medical students, and physicians themselves to actually assess their patient right there, and they will be able to determine if the patient is having silent seizures.”

The traditional approach to interpreting EEGs requires physicians with formal training to visually assess the waveforms. This approach can be less practical in critical settings where a trained EEG specialist is not readily available to review the EEG and diagnose ongoing subclinical seizures, such as nonconvulsive status epilepticus. By converting brain waves into sound, even non-specialists can detect silent seizures -- epileptic seizures without the convulsions commonly expected.

Related Links:
Stanford University School of Medicine

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Birthing Bed
Avante D750

Print article
Detecto

Channels

Surgical Techniques

view channel
Image: The prototype pacemaker is made of a specially engineered membrane (Photo courtesy of University of Chicago)

Ultra-Thin, Light-Controlled Pacemaker Regulates Heartbeats

Millions of individuals depend on pacemakers, small yet vital devices that help maintain a regular heartbeat by regulating the heart's electrical impulses. To minimize complications, there is growing interest... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.