We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Toxin-Absorbing Nanosponges Battle Bacterial Infections

By HospiMedica International staff writers
Posted on 01 Jun 2015
Print article
Image: Nanosponge-hydrogel treats local bacterial infections (Image: courtesy of Weiwei Gao/UCSD).
Image: Nanosponge-hydrogel treats local bacterial infections (Image: courtesy of Weiwei Gao/UCSD).
Toxin-absorbing nanosponges could provide localized therapy against virulent Methicillin-resistant Staphylococcus aureus (MRSA) infections, according to a new study.

Researchers at the University of California, San Diego (UCSD; USA) and Fudan University (Shanghai, China) developed the unihybrid nanomaterial by mixed nanosponges—nanoparticles coated in a red blood cell (RBC) membrane that absorb dangerous toxins produced by MRSA, E. coli, and other antibiotic-resistant bacteria—into a hydrogel made of water and polymers. The optimized hydrogel composition helps retain the toxin-absorbing nanosponges (masquerading as RBCs) in place, while not compromising toxin transport into the gel for neutralization.

Just one RBC membrane can be used to make thousands of polymer core nanosponges, each with a diameter of approximately 85 nanometers, i.e., 3,000 times smaller than the original RBC. The number of toxins each nanosponge could absorb depended on the toxin; in the case of MRSA, one nanosponge can absorb approximately 85 alpha-hemolysin toxins. The nanosponges have a half-life of 40 hours and eventually are metabolized, together with the sequestered toxins, in the liver.

In a murine model, MRSA infected skin lesions that were treated with the nanosponge-hydrogel were significantly smaller than those that were left untreated. The researchers also showed that two days after they were injected underneath the skin of a mouse, nearly 80% of the nanosponge-hydrogels were still found at the injection site. When the nanosponges were injected without the hydrogel, only 20% of them remained at the injection site after just two hours, with most of them diffusing to the surrounding tissues. The study was published on April 31, 2015, in Advanced Materials.

“We combined the strengths of two different materials, nanosponges and hydrogels, to create a powerful formulation to treat local bacterial infections,” said senior author Prof. Liangfang Zhang, PhD, of the school of engineering. “Nanosponges alone are difficult to use on local tissues because they diffuse away to other parts of the body very quickly. By integrating the nanosponges into a hydrogel, we can retain them at the site of infection.”

Related Links:

University of California, San Diego
Fudan University


Platinum Supplier
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Breast Biopsy Device
CYTOMAT
New
Double Roller Pump for Arthroscopy
ARTHRO
New
Mammography Illuminator
Mammoline

Print article
Radcal

Channels

AI

view channel
Image: The WHO has conditionally recommended the use of algorithms in assisting with pediatric tuberculosis diagnosis (Photo courtesy of Pexels)

New Evidence-Based Algorithms Could Improve Diagnosis of Pediatric Tuberculosis

Tuberculosis (TB) continues to be one of the most prevalent causes of death among younger populations worldwide. Research indicates that over 96% of the deadly TB cases in children under the age of 15... Read more

Surgical Techniques

view channel
Image: Lighting up tumors could help surgeons remove them more precisely (Photo courtesy of Pexels)

‘Molecular Imaging’ Lights up Tumors for Surgeons to Enable Precise Removal

Neuroblastoma is a devastating form of childhood cancer that accounts for 8-10% of all childhood cancers and roughly 15% of all childhood deaths from cancer. Sadly, in almost one-third of cases, the cancer... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Business

view channel
Image: The demand for endometrial ablation devices is increasing due to rising prevalence of gynecological disorders (Photo courtesy of Pexels)

Global Endometrial Ablation Market Driven by Rising Prevalence of Gynecological Disorders

Gynecological disorders, such as menorrhagia, PCOD, abnormal vaginal bleeding, affect millions of women globally every year and are on the rise. Abnormal Uterine Bleeding (AUB) is the most common disorder... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.