We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Novel SMP Responds Directly to Enzymatic Activity

By HospiMedica International staff writers
Posted on 14 Mar 2019
Print article
Image: A shape memory polymer (SMP) that responds to enzymes could promote healing (Photo courtesy of Syracuse University).
Image: A shape memory polymer (SMP) that responds to enzymes could promote healing (Photo courtesy of Syracuse University).
A new study shows how a novel shape memory polymer (SMP) that responds to exposure to enzymes could soon be used to treat open wounds, infections, and cancer.

Developed by researchers at Syracuse University (NY, USA) and Bucknell University (Lewisburg, PA, USA), the new SMP includes a shape fixing component, poly(ε-caprolactone) (PCL), that is vulnerable to enzymatic degradation, and a shape memory component, Pellethane, that is enzymatically stable. As the shape fixing PCL component undergoes enzymatically-catalyzed degradation, the SMP can return to its original, programmed shape. It requires no additional trigger, such as a change in temperature, and could thus respond to cellular activity.

The researchers also analyzed material properties, shape memory performance, and cytocompatibility of the enzymatically-catalyzed shape memory response. The results demonstrate enzymatic recovery, as contraction of tensile specimens, and that shape recovery is achieved by degradation of the PCL shape-fixing phase. In addition, both the materials composing the SMP and the process of enzymatic shape recovery were cytocompatible. The study describing the SMP was published on January 15, 2019, in Acta Biomaterialia.

“We anticipate that the materials we're developing could have broad application in health care. For example, our SMPs could be used in drugs that only activate when the target cells or organ are in the desired physiological state, in scaffolds that guide tissue regeneration in response to the behavior of the regenerating tissue itself, and in decision-making biosensors that guide patient treatment more effectively,” said senior author Professor James Henderson, PhD, of Syracuse University. “We're very excited to have achieved these first enzymatically responsive SMPs.”

“The enzymatic sensitivity of the material allows it to respond directly to cell behavior. For instance, you could place it over a wound, and as the tissue remodeled and degraded it, the SMP would slowly pull the wound closed,” said lead author candidate Shelby Buffington, MSc, a biomedical engineering PhD candidate at Syracuse University. “It could be adapted to play a role in treating infections and cancer by adjusting the material's chemistry.”

SMPs include foams, scaffolds, meshes, and other polymeric substrates that have the ability to return from a deformed state (temporary shape) to their original (permanent) shape induced by an external stimulus, such as a temperature change, an electric or magnetic field, light, or a chemical solution. As well as polymers in general, SMPs also cover a wide property-range from stable to biodegradable, from soft to hard, and from elastic to rigid, depending on the structural units that constitute the SMP.

Related Links:
Syracuse University
Bucknell University

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
12-Channel ECG
CM1200B
New
Mobile Fetal Monitor
FTS-6 Mobile
New
Digital Radiography System
DigiEye 680

Print article

Channels

Surgical Techniques

view channel
Image: The KeyScope low-cost laparoscope enables high resolution surgical imaging (Photo courtesy of Barnes et al., doi 10.1117/1.BIOS.2.2.022302)

Low-Cost, Robust Laparoscope Addresses Cost, Power and Sterilization Challenges

Laparoscopic surgery, a minimally invasive technique, has revolutionized surgical practices in high-income countries. This method involves using a laparoscope to perform operations through small incisions,... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.