We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
16 Feb 2023 - 18 Feb 2023

AI Detects Congestive Heart Failure from Single Heartbeat

By HospiMedica International staff writers
Posted on 30 Sep 2019
Print article
Image: A new study claims that heart failure can now be detected from a single heartbeat (Photo courtesy University of Surrey).
Image: A new study claims that heart failure can now be detected from a single heartbeat (Photo courtesy University of Surrey).
A new study reports successful identification of severe chronic heart failure (CHF) in 100% of cases using a single heartbeat recording from an electrocardiogram (ECG).

Researchers at the University of Surrey (Guildford, United Kingdom), the University of Warwick (Coventry, United Kingdom), and The Organizational Neuroscience Laboratory (OneLab; London, United Kingdom) developed the novel approach, which is based on artificial intelligence (AI). The technique uses a convolutional neural network (CNN) data tree to detect data patterns and structures at extremely high efficiency, which accurately identifies CHF on the basis of one raw ECG heartbeat.

The CNN allows time series sub-sequences that serve as the input data to be visualized, thus allowing it to discriminate between CHF and healthy subjects, which not only allows faster detection, but also helps to understand how certain tissue behavior is related to the signals recorded. The researchers tested the model on ECG datasets comprising 490,505 heartbeats; it achieved 100% CHF detection accuracy, and also identified class-discriminative heartbeat sequences and specific ECG morphological characteristics. The study was published on September 3, 2019, in Biomedical Signal Processing and Control Journal.

“We trained and tested the CNN model on large publicly available ECG datasets featuring subjects with CHF as well as healthy, non-arrhythmic hearts. Our model delivered 100% accuracy; by checking just one heartbeat we are able detect whether or not a person has heart failure,” said study author Sebastiano Massaro, PhD, of University of Surrey. “Our model is also one of the first known to be able to identify the ECG' s morphological features specifically associated to the severity of the condition.”

“We envision the adaptation of this system to wearable devices that may be able to perform prediction and detection of CHF using interim ECG recordings, by looking at individual heartbeat morphology. This could allow not only cardiologists but even patients and their caregivers, nurses, trainees, and GPs to take part in the detection process,” concluded Dr. Massaro. “With the completion of the training phase, the network works very rapidly, making it fit for deployment into cloud systems or adaptation to mobile devices.”

CHF is a progressive pathophysiological condition responsible for chronic loss of pumping power in the heart. According to the European Society of Cardiology (ESC), around 26 million people worldwide are affected. Its prevalence increases quickly with age, and mortality rate is closely associated with the degree of severity, reaching peaks of 40% in the most serious events. CHF is also one of the foremost reasons for hospitalization in the elderly, and it is characterized by a resilient relapse rate, with half of the outpatients readmitted within a few months from hospital discharge.

Related Links:
University of Surrey
University of Warwick
The Organizational Neuroscience Laboratory

Platinum Supplier
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Handheld POC Ultrasound
Double-Door Pass-Through Autoclave
150L - 700L Double-Door / Pass-Through
Electric Suction Machine

Print article



view channel
Image: MyoVista Wavelet technology utilizes AI for early detection of heart disease (Photo courtesy of Heart Test Laboratories)

Novel ECG Technology Utilizes AI for Early Detection of Heart Disease

Cardiovascular disease is responsible for 17.9 million deaths every year, or about 32% of all deaths worldwide. Every week, millions of electrocardiographs (ECGs) are performed across the world, making... Read more

Surgical Techniques

view channel
Image: The LithoVue Elite System (Photo courtesy of Boston Scientific)

First Ever Ureteroscope System Monitors Intrarenal Pressure in Real-Time During Ureteroscopy Procedures

About one in 10 people can develop a kidney stone at some point in their lives. Ureteroscopy is commonly performed by urologists to diagnose and treat various problems in the urinary tract, particularly... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Point of Care

view channel
Image: Steripath improves the diagnostic accuracy and timeliness of sepsis test results (Photo courtesy of Magnolia)

All-in-One Device Reduces False-Positive Diagnostic Test Results for Bloodstream Infections

Blood cultures are considered the gold standard diagnostic test for the detection of blood stream infections, such as sepsis. However, positive blood culture results can be frequently wrong, and about... Read more


view channel
Image: The global patient positioning systems market is projected to reach USD 1.7 billion by 2027 (Photo courtesy of Pexels)

Global Patient Positioning Systems Market Driven by Increasing Chronic Diseases

The global patient positioning systems market is projected to grow at a CAGR of 4% from USD 1.4 billion in 2022 to USD 1.7 billion by 2027, driven by increasing technological advancements in medical devices,... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.