We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Wearable Radar Sensor Measures Blood Pressure Continuously

By HospiMedica International staff writers
Posted on 26 Feb 2020
Print article
Image: The CWR sensor that attaches to the sternum (Photo courtesy of Monash University)
Image: The CWR sensor that attaches to the sternum (Photo courtesy of Monash University)
A new study describes how two clip-on sensors attached to the sternum and earlobe can provide real-time blood pressure results.

Under development at Monash University (Melbourne, Australia), the novel measurement technique is based on radar sensor methodology. Instead of the traditional arm cuff, it uses a small continuous wave radar (CWR) sensor adhered to the sternum, and a photoplethysmogram sensor (PPG) clipped to the left earlobe. Using both sensors, the system measures pulse arrival time (PAT), pre-ejection period (PEP), and pulse transit time (PTT), and calculate continuous systolic blood pressure (SBP) from the data.

The researchers then collected experimental data from 43 subjects (40-65 years of age) in various static postures, as well as in 26 subjects doing six different exercise tasks, such as cycling on a stationary bike. Two mathematical models were then used to calculate SBP from the PTT/PAT data, and compare then to simultaneous sphygmomanometer readings. The results showed that for participants in the posture tasks, the best cumulative error percentage (CEP) was 92.28%, and for those in the exercises group, the best CEP was 82.61%. Additionally, removing PEP from PAT lead to a 9% improvement in results. The study was published on November 27, 2019, in Nature Scientific Reports.

“Clinicians still cannot continuously measure blood pressure during sleep, nor during times of activity such as walking or running. This means people with high, low, or irregular blood pressure can’t get the critical information they need about the state of their health around the clock,” said senior author Mehmet Yuce, PhD, of the department of electrical and computer systems engineering. “A wearable device that can provide comfort and portability while people are going about their daily lives will be a significant development for the health sector in Australia and internationally.”

CWR uses known radiofrequency (RF) energy that is transmitted and then received from any reflecting objects. Any movement of the transmitter, target, or both causes a change in the frequency of the electromagnetic wave, known as the Doppler shift. It is also possible to use CWR to measure range instead of range rate by frequency modulation. By measuring the frequency of the return signal, the time delay between transmission and reception can be measured.

Related Links:
Monash University

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
6 Drawer X-Tall Emergency Cart
UXRLU-333669-RED

Print article

Channels

Surgical Techniques

view channel
Image: Fixation screws for ligament to bone repair (Photo courtesy of 4D Medicine)

Novel Biomaterial Platform Opens Up New Possibilities for Implants and Devices

Resorbable biomaterials, crucial for implantable medical devices, have seen little innovation over decades. Materials like Polylactic Acid (PLA), Polycaprolactone (PCL), and Poly Lactic-co-Glycolic Acid... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.