We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Finger Stick Blood Test Detects Early Signs of Heart Attack Before it Occurs

By HospiMedica International staff writers
Posted on 21 Jun 2022
Print article
Image: Micro-device designed to sense blood clots could pick up early signs of heart attack (Photo courtesy of Pexels)
Image: Micro-device designed to sense blood clots could pick up early signs of heart attack (Photo courtesy of Pexels)

Heart attacks and strokes are the world’s leading cause of death. Many are caused by blood clots that block the flow of blood to the heart, often in at-risk individuals without any physical warning. However, long before a heart attack or stroke occurs, tiny changes in the blood begin taking place. Often, blood flow is disturbed, leading to blood clotting and inflammation which can block blood vessels. Now, researchers are developing a biomedical micro-device to detect these subtle platelet changes before a heart attack or stroke takes place.

Using a pin-prick test, the micro-device developed by scientists at the University of Sydney (Sydney, Australia) would take a blood sample from a person’s finger. The sample would then be analyzed for platelet clotting and white cell inflammation responses, information that would be immediately processed by an external operating system. The scientists will undertake further engineering development for the microdevice, which is predicated on an integrated microfluidic chip. The team is also working to build highly sensitive computational fluid dynamics simulations to better understand the impact of mechanical forces that could lead to blood pooling and clots.

“How this device would work is that an at-risk person, for example, someone with heart disease, would use it daily. Using a finger prick test, the device would monitor their blood and alert them to any potentially dangerous changes. If a change was detected, they would need to present for more monitoring at a hospital," said Dr. Arnold Lining Ju, an award-winning biomedical engineer from the University of Sydney's Nano Institute and School of Biomedical Engineering.

Research assistant Laura Moldovan said that, historically, it has been difficult to predict when a heart attack or stroke might happen: “They appear to occur at random, sometimes without any physical symptoms, however in fact there are tiny physical changes that occur in the blood – the key to this device is being able to sensitively monitor these microscopic changes.”

Related Links:
University of Sydney 

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
EEG System
BRAIN QUICK

Print article

Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.