We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Skin-Worn Biosensors Fashioned from Old CDs Can Monitor Health Markers

By HospiMedica International staff writers
Posted on 12 Aug 2022
Print article
Image: New research turns CDs into flexible and inexpensive biosensors (Photo courtesy of Binghamton University)
Image: New research turns CDs into flexible and inexpensive biosensors (Photo courtesy of Binghamton University)

Billions of discarded CDs end up in landfills across the world with negative environmental consequences. Now, new research offers a second life for CDs by turning them into flexible biosensors that are inexpensive and easy to manufacture, and can monitor various health conditions and markers.

Researchers at Binghamton University (Binghamton, NY, USA) have shown how a gold CD’s thin metallic layer can be separated from the rigid plastic and fashioned into sensors to monitor electrical activity in human hearts and muscles as well as lactose, glucose, pH and oxygen levels. The sensors can communicate with a smartphone via Bluetooth. The fabrication is completed in 20 to 30 minutes without releasing toxic chemicals or needing expensive equipment, and it costs about USD 1.50 per device.

The researchers initially began by investigating previous research on biosensors made from CDs, but found that those sensors retained a rigid structure and had a more limited number of applications than they hoped to achieve. The first step was removing the metallic coating from the plastic beneath using a chemical process and adhesive tape. The researchers loosened the layer of metals from the CD and then picked up that metal layer with tape, so they could just peel it off. That thin layer is then processed and flexible.

To create the sensors, the researchers used a Cricut cutter, an off-the-shelf machine for crafters that generally cuts designs from materials like paper, vinyl, card stock and iron-on transfers. The flexible circuits then would be removed and stuck onto a person. With the help of a smartphone app, medical professionals or patients could get readings and track progress over time. The researchers are thrilled to see something they speculated could be possible almost a decade ago is now a reality, and have ideas about how the CD-to-sensor technology could be improved.

“We used gold CDs, and we want to explore silver-based CDs, which I believe are more common,” said Matthew Brown, PhD ’22. “How can we upcycle those types of CDs with the same kind of process? We also want to look at if we can utilize laser engraving rather than using the fabric-based cutter to improve the upcycling speed even further.”

Related Links:
Binghamton University 

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Portable Single Breath DLCO Device
EasyOne Pro

Print article

Channels

Surgical Techniques

view channel
Image: Fixation screws for ligament to bone repair (Photo courtesy of 4D Medicine)

Novel Biomaterial Platform Opens Up New Possibilities for Implants and Devices

Resorbable biomaterials, crucial for implantable medical devices, have seen little innovation over decades. Materials like Polylactic Acid (PLA), Polycaprolactone (PCL), and Poly Lactic-co-Glycolic Acid... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.