We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
16 Feb 2023 - 18 Feb 2023

AI Predicts Demand for Hospital Beds for Patients Coming Through Emergency Department

By HospiMedica International staff writers
Posted on 09 Sep 2022
Print article
Image: AI tool estimates how many hospital beds will be needed for patients coming through ED (Photo courtesy of UCL)
Image: AI tool estimates how many hospital beds will be needed for patients coming through ED (Photo courtesy of UCL)

An artificial intelligence (AI) tool is being used to predict how many patients coming through the emergency department will need to be admitted into the hospital, helping planners manage demand on beds.

The tool, developed by researchers at University College London (UCL, London, UK), estimates how many hospital beds will be needed in four and eight hours’ time by looking at live data of patients who have arrived at the hospital’s emergency department. In their study, the research team showed that the tool was more accurate than the conventional benchmark used by planners, based on the average number of beds needed on the same day of the week for the previous six weeks. The tool, which also accounts for patients yet to arrive at hospital, also provides much more detailed information than the conventional method. Instead of a single figure prediction for the day overall, the tool includes a probability distribution for how many beds will be needed in four- and eight-hours’ time and provides its forecasts four times a day, emailed to hospital planners. The research team is now refining the models so that they can estimate how many beds will be needed in different areas of the hospital (e.g. beds on medical wards or surgical wards).

In order to develop the AI tool, the researchers trained 12 machine learning models using patient data recorded at UCLH between May 2019 and July 2021. These models assessed each patient’s probability of being admitted to the hospital from the emergency department based on data ranging from age and how the patient arrived in hospital, to test results and number of consultations, and combined these probabilities for an overall estimate of the number of beds needed. Upon comparing the models’ predictions to actual admissions between May 2019 to March 2020, the team found that the models outperformed the conventional method, with central predictions an average of four admissions off the actual figure compared to the conventional method, which was on average 6.5 admissions out. After COVID-19 hit, the researchers were able to adapt the models to take account of significant variations both in the numbers of people arriving and the amount of time they spent in the emergency department.

“Our AI models provide a much richer picture about the likely demand on beds throughout the course of the day,” said Dr. Zella King (UCL Clinical Operational Research Unit and the UCL Institute of Health Informatics). “They make use of patient data the instant this data is recorded. We hope this can help planners to manage patient flow – a complex task that involves balancing planned-for patients with emergency admissions. This is important in reducing the number of cancelled surgeries and in ensuring high-quality care.”

“This AI tool will be hugely valuable in helping us manage admissions and patient flow at UCLH,” added Alison Clements, Head of Operations, Patient Flow & Emergency Preparedness, Resilience & Response at UCLH. “Our next step is to start using the predictions in daily flow huddles. We look forward to continuing work with UCL to refine the tool and expand its predictive power across the hospital.”

Related Links:
University College London 

Gold Supplier
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Ceiling-Mounted Digital X-Ray System
DigitalDiagnost C50
Handheld POC Ultrasound
Surgical Table

Print article



view channel
Image: A novel research study moves the needle on predicting coronary artery disease (Photo courtesy of Pexels)

AI-Enabled ECG Analysis Predicts Heart Attack Risk Nearly as well as CT Scans

Increased coronary artery calcium is a marker of coronary artery disease that can lead to a heart attack. Traditionally, CT scans are used to diagnose buildup of coronary artery calcium, although CT scanners... Read more

Surgical Techniques

view channel
Image: The neuro-chip with soft implantable electrodes could manage brain disorders (Photo courtesy of EPFL)

Implantable Neuro-Chip Uses Machine Learning Algorithm to Detect and Treat Neurological Disorders

Using a combination of low-power chip design, machine learning algorithms, and soft implantable electrodes, researchers have produced a neural interface that can identify and suppress symptoms of different... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Point of Care

view channel
Image: Steripath improves the diagnostic accuracy and timeliness of sepsis test results (Photo courtesy of Magnolia)

All-in-One Device Reduces False-Positive Diagnostic Test Results for Bloodstream Infections

Blood cultures are considered the gold standard diagnostic test for the detection of blood stream infections, such as sepsis. However, positive blood culture results can be frequently wrong, and about... Read more


view channel
Image: Researchers expect broader adoption of AI in healthcare in the near future (Photo courtesy of Pexels)

Artificial Intelligence (AI) Could Save U.S. Healthcare Industry USD 360 Billion Annually

The wider adoption of artificial intelligence (AI) in healthcare could save the U.S. up to USD 360 billion annually although its uptake in the industry is presently limited owing to the absence of trust... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.