We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

First-of-Its-Kind Electronic Skin Patch Enables Advanced Health Care Monitoring

By HospiMedica International staff writers
Posted on 31 Jan 2023
Print article
Image: The advanced electronic skin could enable multiplex healthcare monitoring (Photo courtesy of Terasaki Institute)
Image: The advanced electronic skin could enable multiplex healthcare monitoring (Photo courtesy of Terasaki Institute)

For some time now, electronic skin (E-skin) patches have been used to monitor bodily physiological and chemical indicators of health. Such monitors, placed on the skin, are capable of measuring various parameters like body motions and temperature, skin hydration, different metabolic biomarkers, and brain and heart functionality (via electrocardiograms and electroencephalograms). A skin-sensing patch usually consists of a sensor layer, which converts physical information into electrical signals, positioned on top of a flexible, stretchable substrate layer that rests on the skin and is resistant to mechanical deformation. However, most current substrates have mechanical and biological incompatibilities along with poor breathability, thereby hampering multi-sensing ability and resulting in skin irritation and inflammation, particularly after long-term use. Additionally, most current substrates cannot be recycled or disposed off in an environmentally friendly manner.

Now, scientists from the Terasaki Institute (Los Angeles, CA, USA) have addressed these problems by using a novel gelatin-based, highly porous substrate to devise a first-of-its-kind E-skin patch for advanced healthcare monitoring. Using an optimum choice in materials and a novel fabrication method, the E-skin patch provides simultaneous, continuous monitoring of multiple bodily parameters, along with providing temperature-moisture management and breathability. By opting for gelatin methacryloyl (GelMA) to fabricate their substrate, the researchers managed to meet the need for biocompatibility, biodegradation, self-adhesion, and tissue-like mechanical properties.

However, the need for breathability and moisture control still posed a challenge. It was possible to achieve permeability in GelMA by rendering it into a porous aerogel form, although the resultant aerogel was brittle, making it unsuitable for skin-sensing substrates. The TIBI researchers resolved this issue by carefully examining the effects of cryofreezing on GelMA flexibility and using their understanding to develop a novel method for overcoming the brittleness of GelMA aerogels. Their method led to the creation of a GelMA aerogel that is flexible, breathable, ultralight, and moisture/air-permeable, on account of its highly uniform and interconnected pores and their potential for three-dimensional capillary action. The substrate’s enhanced capabilities also allowed the researchers to screen-print integrated multifunctional sensors onto the substrate, which could then be placed on the skin to simultaneously stimulate sweat excretion and extraction of interstitial fluid just below the surface of the skin. This enables continuous and multifunctional monitoring of bodily parameters like skin temperature and hydration levels, electro-cardiac measurements, and metabolic markers such as glucose, alcohol, and lactic acid.

The researchers validated these functions by using the new E-skin patch in a series of tests measuring the effects of glucose and alcohol-containing diets on subjects performing strenuous exercise. A comparison of the results against various individual commercial measurement devices showed that there was a good correlation. The researchers conducted further tests that validated the new E-skin’s superior flexibility, thermal cooling abilities, and fluid absorption over conventional brittle aerogel substrates, and also demonstrated excellent biocompatibility and biodegradation without any skin irritation. Additionally, the E-skin is biodegradable, thus eliminating the need for environmentally harmful waste disposal. Such an innovative multi-sensing device can provide a more accurate, real-time patient physiological profile. It will also be particularly beneficial for patients having several interrelated health conditions, like those with insulin-dependent diabetes who are prone to severe effects from glucose and alcohol and need to closely monitor their consumption. The E-skin can also find other applications by using different approaches, such as integrating additional simultaneous physiological measurements, coupling with drug delivery systems for therapeutic indications, and incorporating a wireless system for increasing convenience for patients.

“The advancements described here pave the way for producing next-generation electronic skin devices,” said Ali Khademhosseini, Ph.D., TIBI’s Director, and CEO. “They will be valuable tools in healthcare management, offering the best in accurate, real-time monitoring for real-life situations.”

Related Links:
Terasaki Institute

Gold Supplier
SBRT Phantom with Removable Spine
E2E SBRT Phantom with Removable Spine Model 036S-CVXX-xx
Mobile DR System
uDR 380i Pro
Single-Use Video Laryngoscope
GlideScope Spectrum
Ventilator Breathing System
Single-Use Ventilator Breathing Systems

Print article



view channel
Image: Machine learning program can accurately predict a patient’s risk of death within a month, a year and five years (Photo courtesy of Pexels)

Machine Learning Programs Predict Mortality Risk by Analyzing Results from Routine Hospital Tests

Individuals having high blood pressure or symptoms of heart disease, such as chest pain, shortness of breath or an irregular heartbeat generally visit a hospital or an emergency department.... Read more

Surgical Techniques

view channel
Image: Lighting up tumors could help surgeons remove them more precisely (Photo courtesy of Pexels)

‘Molecular Imaging’ Lights up Tumors for Surgeons to Enable Precise Removal

Neuroblastoma is a devastating form of childhood cancer that accounts for 8-10% of all childhood cancers and roughly 15% of all childhood deaths from cancer. Sadly, in almost one-third of cases, the cancer... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Point of Care

view channel
Image: The Profile System is a portable and fully automated immunodiagnostic device (Photo courtesy of Proxim Diagnostics)

Handheld Immunoanalyzer Performs Laboratory Tests near Patient without Sacrificing Sensitivity and Precision

Near Patient Testing (NPT), also known as Point of Care Testing (POCT), is a rapidly growing area within the field of In vitro diagnostics (IVDs). NPT is now recognized for its key role in making services... Read more


view channel
Image: The demand for endometrial ablation devices is increasing due to rising prevalence of gynecological disorders (Photo courtesy of Pexels)

Global Endometrial Ablation Market Driven by Rising Prevalence of Gynecological Disorders

Gynecological disorders, such as menorrhagia, PCOD, abnormal vaginal bleeding, affect millions of women globally every year and are on the rise. Abnormal Uterine Bleeding (AUB) is the most common disorder... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.