We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
77 ELEKTRONIKA

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Ultra-Soft, Highly Stretchable Implantable Sensor Monitors Bladder Activity in Real-Time

By HospiMedica International staff writers
Posted on 10 Mar 2023
Print article
Image: An ultra-soft and highly stretchable tissue-adhesive hydrogel based multifunctional implantable sensor can monitor overactive bladder (Photo courtesy of Pexels)
Image: An ultra-soft and highly stretchable tissue-adhesive hydrogel based multifunctional implantable sensor can monitor overactive bladder (Photo courtesy of Pexels)

Overactive bladder syndrome is a medical condition that causes a frequent and uncontrollable urge to urinate, even without an underlying illness. Patients may even awaken during the night to urinate, disrupting their daily activities and reducing their quality of life. While the condition is not life-threatening, traditional medication treatments have proven ineffective for some patients. A newer treatment option involves electrical stimulation directly or indirectly to the nerves linked to the bladder, aimed at reducing excessive bladder activity. However, this treatment presents challenges in maintaining the right amount of stimulation without overstimulation, which can lead to side effects or render the treatment ineffective.

A team of researchers from Pohang University of Science and Technology (POSTECH, Gyeongbuk. Korea) and Korea Advanced Institute of Science and Technology (KAIST, Daejeon, Korea) has created a tissue-adhesive hydrogel-based multifunctional implantable sensor that is ultra-soft and highly stretchable. The sensor has been designed to monitor overactive bladder in real-time. The team determined that a complete electromechanical measurement was necessary to accurately track bladder activity since the detrusor muscle is influenced by neural signals. With this in mind, they developed a USH-SI sensor that can simultaneously observe both mechanical (using a strain sensor to measure contraction and relaxation) and bioelectrical (using an EMG sensor to measure neural signals) activity within the bladder, all on one platform.

In a study, the team surgically inserted the USH-SI sensor into an anesthetized pig and found that the sensor is capable of measuring in-vivo strain and EMG signals of the bladder, allowing monitoring of detrusor muscle locomotion and neural activity. In particular, the strong adhesiveness of the hydrogel (adhesive strength: 260.86 N/m) enabled firmer attachment onto the bladder compared to conventional silicone sensors. The sensor insertion can be performed using surgical-robot-assisted laparoscopic surgery.

“The new sensor shows that sensors can be made small enough to be inserted by surgical-robot-assisted laparoscopic surgery,” explained Professor Steve Park from KAIST. “This has the potential to minimize the time taken for a patient to recover and reduce side effects.”

“We combined the USH-SI sensor with a neural stimulator targeted to treat overactive bladders, a chronic condition,” added Professor Sung-Min Park who led the study. “This allows for monitoring and neural stimulation simultaneously. We expect it to be a platform that can be applied to other internal organs.”

Related Links:
POSTECH 
KAIST 

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
12-Channel ECG
CM1200B
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Surgical Planning Software and Guide
Signature ONE Surgical Planning

Print article

Channels

Surgical Techniques

view channel
Image: Fixation screws for ligament to bone repair (Photo courtesy of 4D Medicine)

Novel Biomaterial Platform Opens Up New Possibilities for Implants and Devices

Resorbable biomaterials, crucial for implantable medical devices, have seen little innovation over decades. Materials like Polylactic Acid (PLA), Polycaprolactone (PCL), and Poly Lactic-co-Glycolic Acid... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.