We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Ultra-Soft, Highly Stretchable Implantable Sensor Monitors Bladder Activity in Real-Time

By HospiMedica International staff writers
Posted on 10 Mar 2023
Print article
Image: An ultra-soft and highly stretchable tissue-adhesive hydrogel based multifunctional implantable sensor can monitor overactive bladder (Photo courtesy of Pexels)
Image: An ultra-soft and highly stretchable tissue-adhesive hydrogel based multifunctional implantable sensor can monitor overactive bladder (Photo courtesy of Pexels)

Overactive bladder syndrome is a medical condition that causes a frequent and uncontrollable urge to urinate, even without an underlying illness. Patients may even awaken during the night to urinate, disrupting their daily activities and reducing their quality of life. While the condition is not life-threatening, traditional medication treatments have proven ineffective for some patients. A newer treatment option involves electrical stimulation directly or indirectly to the nerves linked to the bladder, aimed at reducing excessive bladder activity. However, this treatment presents challenges in maintaining the right amount of stimulation without overstimulation, which can lead to side effects or render the treatment ineffective.

A team of researchers from Pohang University of Science and Technology (POSTECH, Gyeongbuk. Korea) and Korea Advanced Institute of Science and Technology (KAIST, Daejeon, Korea) has created a tissue-adhesive hydrogel-based multifunctional implantable sensor that is ultra-soft and highly stretchable. The sensor has been designed to monitor overactive bladder in real-time. The team determined that a complete electromechanical measurement was necessary to accurately track bladder activity since the detrusor muscle is influenced by neural signals. With this in mind, they developed a USH-SI sensor that can simultaneously observe both mechanical (using a strain sensor to measure contraction and relaxation) and bioelectrical (using an EMG sensor to measure neural signals) activity within the bladder, all on one platform.

In a study, the team surgically inserted the USH-SI sensor into an anesthetized pig and found that the sensor is capable of measuring in-vivo strain and EMG signals of the bladder, allowing monitoring of detrusor muscle locomotion and neural activity. In particular, the strong adhesiveness of the hydrogel (adhesive strength: 260.86 N/m) enabled firmer attachment onto the bladder compared to conventional silicone sensors. The sensor insertion can be performed using surgical-robot-assisted laparoscopic surgery.

“The new sensor shows that sensors can be made small enough to be inserted by surgical-robot-assisted laparoscopic surgery,” explained Professor Steve Park from KAIST. “This has the potential to minimize the time taken for a patient to recover and reduce side effects.”

“We combined the USH-SI sensor with a neural stimulator targeted to treat overactive bladders, a chronic condition,” added Professor Sung-Min Park who led the study. “This allows for monitoring and neural stimulation simultaneously. We expect it to be a platform that can be applied to other internal organs.”

Related Links:
POSTECH 
KAIST 

Platinum Supplier
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
3-Channel ECG Machine
ECG-32B
New
Surgical Monitor
FS-L3202D 32 HD
New
Silver Supplier
Step Platform for U-Arm System
U-Arm Step

Print article
Radcal

Channels

Surgical Techniques

view channel
Image: New robust thermosensitive bioadhesives can improve surgical sealing (Photo courtesy of Pexels)

New Surgical Sealing Biomaterial Could Eliminate Standard Methods of Suturing and Stapling

For surgical wounds to be properly closed, the sealant material used must effectively seal on wet, slippery tissue surfaces that vary in shape and may involve tissue movement, such as an expanding lung,... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Business

view channel
Image: The demand for endometrial ablation devices is increasing due to rising prevalence of gynecological disorders (Photo courtesy of Pexels)

Global Endometrial Ablation Market Driven by Rising Prevalence of Gynecological Disorders

Gynecological disorders, such as menorrhagia, PCOD, abnormal vaginal bleeding, affect millions of women globally every year and are on the rise. Abnormal Uterine Bleeding (AUB) is the most common disorder... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.