We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

Microdevices Implanted Into Tumors Can Treat Brain Cancer

By HospiMedica International staff writers
Posted on 07 Sep 2023
Print article
Image: The microdevices are implanted in a patient’s tumor during surgery and removed before the surgery is complete (Photo courtesy of 123RF)
Image: The microdevices are implanted in a patient’s tumor during surgery and removed before the surgery is complete (Photo courtesy of 123RF)

Gliomas, a particularly lethal form of brain and spinal cord tumor, pose a formidable challenge for treatment. Developing precise therapies for these tumors is hampered by the difficulty of testing numerous drug combinations in real tumor cells, as patients can only undergo one treatment approach at a time. Now, a groundbreaking solution has emerged in the form of tiny devices, no larger than a grain of rice, capable of conducting multiple experiments concurrently to assess the impact of novel treatments on these hardest-to-treat brain cancers.

Researchers from Brigham and Women's Hospital (Boston, MA, USA) have designed a device for testing glioma treatments in patients suffering from this deadly type of brain cancer. This innovative device, integrated seamlessly into standard surgical procedures, offers unprecedented insights into drug effects on glioma tumors and, importantly, did not cause any adverse reactions in a phase 1 clinical trial. During surgery, these microdevices are implanted directly into the patient's tumor and remain in place for around 2-3 hours. During this time, the device administers minuscule doses of up to 20 drugs into extremely small areas of the brain tumor. Subsequently, the device is removed, and the surrounding tissue is sent to the lab for in-depth analysis. Since the device operates within the patient's body, it provides an unparalleled opportunity to evaluate drug impacts on the tumor microenvironment – the cells immediately adjacent to cancer cells, often composing a significant portion of the tumor mass.

In a recent study, the researchers applied their device to six patients undergoing glioma tumor removal surgery. Remarkably, none of the patients experienced adverse effects from the device. The research team collected invaluable biological data, including how responses change with varying drug concentrations and the molecular changes induced by each drug in the cells. While the study confirmed the device's safety and seamless integration into surgical practice, researchers are now focusing on optimizing glioma therapy using the data collected. They are presently conducting a two-stage procedure in which patients receive the device through minimally invasive surgery 72 hours prior to their main surgery, further advancing the potential of this groundbreaking approach.

“We’re optimistic that this is a new generation approach for personalized medicine,” said co-principal investigator and co-corresponding author Pierpaolo Peruzzi, MD, PhD. “The ability to bring the lab right to the patient unlocks so much potential in terms of the type of information we can gather, which is new and exciting territory for a disease that has very few options at present.”

Related Links:
Brigham and Women's Hospital 

Platinum Supplier
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Supplier
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Automatic External Defibrillator
Lifeline ECG AED
6MP Color LED Backlit LCD Monitor

Print article


Critical Care

view channel
Image: Flexible thin-film electrodes placed directly on brain tissue have shown promise for diagnosis and treatment of epilepsy (Photo courtesy of Tokyo Tech)

Thin-Film Neural Electrodes Placed Directly on Brain Tissue Can Diagnose and Treat Epilepsy

Analyzing brain activity is crucial for diagnosing conditions like epilepsy and other mental health disorders. Among various methods, electroencephalography (EEG) is considered the least intrusive, using... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The broad-spectrum POC coagulometer is well-suited for emergency room and emergency vehicle use (Photo courtesy of Perosphere)

Novel POC Coagulometer with Lab-Like Precision to Revolutionize Coagulation Testing

In emergency settings, when patients arrive with a bleed or require urgent surgery, doctors rely solely on clinical judgment to determine if a patient is adequately anticoagulated for reversal treatment.... Read more


view channel
Image: The global surgical lights market is expected to grow by close to USD 0.50 billion from 2022 to 2027 (Photo courtesy of Freepik)

Global Surgical Lights Market Driven by Increasing Number of Procedures

The global surgical lights market is set to witness high growth, largely due to the increasing incidence of chronic illnesses, a surge in demand for cosmetic and plastic surgeries, and untapped opportunities... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.