We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

MRI-Guided Multi-Stage Robotic Positioner Enhances Stereotactic Neurosurgery Precision

By HospiMedica International staff writers
Posted on 30 May 2024
Print article
Image: The interactive multi-stage robotic positioner is specifically designed for MRI-guided stereotactic neurosurgery (Photo courtesy of University of Hong Kong)
Image: The interactive multi-stage robotic positioner is specifically designed for MRI-guided stereotactic neurosurgery (Photo courtesy of University of Hong Kong)

Magnetic resonance imaging (MRI) offers significant benefits in neurosurgery, providing detailed 3D visualizations of neurovascular structures and tumors. Traditionally, its use has been restricted to analyzing static images taken before or after surgery, leading to potential inaccuracies due to the setup of stereotactic frames, image registration, and brain shifts. Researchers have now developed a specialized interactive multi-stage robotic positioner for use in MRI-guided stereotactic neurosurgery, enhancing the precision of these surgical interventions.

This advanced system developed by a team from the University of Hong Kong (HKU, Pokfulam, Hong Kong) is designed to assist in various procedures such as cannula or needle targeting, which are crucial in treatments like deep brain stimulation (DBS) for movement disorders including Parkinson’s disease. Additionally, it supports a variety of therapeutic interventions like biopsy, drug delivery, ablation, and catheter placement into deep brain areas. In 2018, this team successfully developed the world’s first robotic system capable of conducting bilateral stereotactic neurosurgery within an MRI setting, which helped overcome challenges associated with lengthy procedures and complex workflows. The initial prototype has since been refined by the team.

The latest version of this system facilitates interactive, semi-automatic manipulation in two stages. Initially, based on pre-operative images, the surgeon positions the robotic instrument guide towards the target trajectory. The system incorporates fiber-optic lighting to visually indicate any angulation errors relative to the target trajectory. When the instrument guide is aligned within 5 degrees of the target, it can be remotely locked in place. The system uses finite element analysis (FEA) for design optimization and employs a fluid-driven soft actuator architecture to position the instrument with an orientation error of less than 0.2 degrees. Orientation locking is robust, utilizing soft robotic mechanisms such as tendon-driven baking units and granular jamming.

Following this setup, the surgeon manually inserts the instrument through the robot-guided pathway, with an insertion stopper aiding in setting the precise depth. This technology helps eliminate the inherent errors found in traditional frame-based stereotaxy, thus enhancing insertion accuracy and improving surgical outcomes. It also reduces the duration of the operation, which contributes to greater patient comfort and satisfaction. The device itself is compact and lightweight (97 x 81 mm, 203g), designed to be compatible with most standard imaging head coils. It includes custom-made miniature wireless omnidirectional tracking markers and a zero-electromagnetic-interference system to support accurate robot registration under real-time MRI conditions. The system's effectiveness has been confirmed through cadaveric studies and skull model testing, achieving a precision error of less than 3 mm and showing significant potential for future clinical application.

Related Links:
University of Hong Kong

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Solid State Kv/Dose Multi-Sensor
Silver Member
Wireless Mobile ECG Recorder
Tablet Cart
Tryten S1

Print article


Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.