We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App


13 Jun 2024 - 15 Jun 2024
18 Jun 2024 - 20 Jun 2024

Innovative Method Combats Bacterial Infection Post Artificial Bone Transplantation

By HospiMedica International staff writers
Posted on 24 Oct 2023
Print article
Image: Oxygen vacancy boosting Fenton reaction in bone scaffold towards fighting bacterial infection (Photo courtesy of Central South University)
Image: Oxygen vacancy boosting Fenton reaction in bone scaffold towards fighting bacterial infection (Photo courtesy of Central South University)

Artificial bone transplantation has long struggled with a major obstacle: the high risk of bacterial infection, which can result in transplant failure and severe outcomes like amputation. A new innovative method has been developed that tackles this issue by enriching H2O2 from the microenvironment and enhancing the ability of Fenton reaction to functionalize bone scaffold with antibacterial properties.

Scientists from Central South University (Changsha, China) have leveraged Fe-doped TiO2 nanoparticles enriched with oxygen vacancy defects to amplify the Fenton reaction's effectiveness. These nanoparticles were synthesized from nano TiO2 and Fe3O4, using a high-energy ball milling technique. What makes this study unique is its multi-layered benefits. By enhancing the antibacterial efficacy of the bone scaffolds, the scientists have not just solved the immediate problem of infections but have also set the stage for more stable and resilient transplant procedures. This advancement holds substantial promise, leading to fewer instances of transplant failures, reduced post-surgery complications, and offering new hope for those in need of bone transplants.

"Antibacterial artificial bone scaffolds are expected to solve the problem of bacterial infection after bone transplantation,” said Prof. Pei Feng, a professor from Central South University. “With the development of modern bone tissue engineering and biomaterials, composite bone implants with multiple functions such as anti-infection, bone conduction and bone induction will have a good prospect in the repair and treatment of bone defects.”

"Our innovative methodology lays the foundation for antibacterial bone scaffold treatments, holding the promise to drastically reduce associated complications," added Prof. Pei Feng.

Related Links:
Central South University 

Gold Member
Solid State Kv/Dose Multi-Sensor
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Compact 14-Day Uninterrupted Holter ECG
Compact C-Arm
Arcovis DRF-C S21

Print article


Surgical Techniques

view channel
Image: The researchers tweaked borophene to interact with cells and other biological units in unique ways (Photo courtesy of Dipanjan Pan/Penn State)

New Two-Dimensional Material Paves Way for Safer, More Effective Implantable Medical Devices

Borophene, first synthesized in 2015, is an atomically thin version of boron that surpasses graphene—the two-dimensional (2D) version of carbon—in conductivity, thinness, lightness, strength, and flexibility.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.