We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
77 ELEKTRONIKA

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

First-in-Class Targeted microRNA Therapy Slows Cancer Tumor Growth

By HospiMedica International staff writers
Posted on 31 Oct 2023
Print article
Image: A new therapy for cancer uses microRNA to slow or stop the division of cancer cells (Photo courtesy of Purdue University)
Image: A new therapy for cancer uses microRNA to slow or stop the division of cancer cells (Photo courtesy of Purdue University)

Cancer begins when cells in the body start to divide without control, often ignoring signals to stop dividing or die, and sometimes even dodging the immune system. A breakthrough cancer treatment now attacks tumors by tricking cancer cells into absorbing a specific RNA snippet that naturally inhibits cell division. During a 21-day study, tumors exposed to this treatment remained the same size, while those without treatment tripled in size.

The new cancer therapy was developed by researchers at Purdue University (West Lafayette, IN, USA) and has been trialed on mice. It employs a delivery system specifically aimed at cancer cells and uses a specially engineered form of microRNA-34a, a molecule likened to "brakes on a car" for its ability to halt cell division. MicroRNA-34a consists of a short, double-stranded sequence of ribonucleic acids linked together like a zipper along a sugar-phosphate backbone. The two strands of the microRNA are unevenly zipped, with one strand guiding a protein complex to its destination inside the cell while the other strand is broken down. In healthy cells, there is a high level of microRNA-34a, but this is significantly reduced in many cancer cells.

This targeted form of microRNA-34a doesn't just stall or reverse tumor growth; it also considerably suppresses the activity of at least three genes—MET, CD44, and AXL—that are known for fueling cancer and causing resistance to other cancer treatments. The suppression lasts for a minimum of 120 hours. This suggests that this new, patent-pending treatment, which has evolved from over 15 years of research into using microRNA to combat cancer, could be effective both as a standalone treatment and when used in conjunction with existing medications for treating drug-resistant cancers. An added benefit is that the engineered microRNA-34a is designed to be undetectable by the immune system, which usually targets and destroys double-stranded RNA introduced to the body.

“When we acquired the data, I was ecstatic. I am confident that this approach is better than the current standard of treatment and that there are patients who will benefit from this,” said Andrea Kasinski, a member of the Purdue Institute for Cancer Research.

Related Links:
Purdue University

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
12-Channel ECG
CM1200B
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Silver Member
ECG Cart System
NECG Trolley

Print article

Channels

Surgical Techniques

view channel
Image: Fixation screws for ligament to bone repair (Photo courtesy of 4D Medicine)

Novel Biomaterial Platform Opens Up New Possibilities for Implants and Devices

Resorbable biomaterials, crucial for implantable medical devices, have seen little innovation over decades. Materials like Polylactic Acid (PLA), Polycaprolactone (PCL), and Poly Lactic-co-Glycolic Acid... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.