We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




New Robotic System Assesses Mobility After Stroke

By HospiMedica International staff writers
Posted on 23 Nov 2023

Worldwide, strokes affect over 15 million individuals annually, leaving three-quarters of survivors with arm and hand limitations, including weakness and paralysis. More...

Overcoming the tendency to underuse the affected arm, a phenomenon known as "arm nonuse" or "learned nonuse," is crucial for rehabilitation, but gauging arm usage outside clinical environments poses a significant challenge. Observing natural behavior often requires discreet monitoring methods. Addressing this need, researchers have now designed an innovative robotic system that collects accurate data on how stroke survivors spontaneously use their arms.

Developed by a team at USC Viterbi in Los Angeles, CA, USA, this cutting-edge approach employs a robotic arm to gather 3D spatial data about arm movements. The system utilizes machine learning algorithms to analyze this data, producing a reliable "arm nonuse" metric that can greatly assist clinicians in assessing rehabilitation progress. To make the experience engaging and supportive, a socially assistive robot (SAR) offers instructions and encouragement throughout the process. In their study, the USC Viterbi team worked with 14 participants who had been right-hand dominant prior to experiencing a stroke. The participants began by placing their hands on a 3D-printed box equipped with touch sensors, which served as the system's starting position. The SAR introduced the system's functionality and provided positive feedback. The robot arm would then move a button to various predetermined locations, initiating the "reaching trial" when the button lit up and the participant was cued to move.

The trial consisted of two phases: first, participants used their naturally preferred hand, mimicking typical daily activities. In the second phase, they were instructed to use their stroke-affected arm, akin to exercises performed in therapy or clinical settings. The team's machine learning analysis focused on three key metrics: the probability of arm use, the time taken to reach the target, and the successful completion of the reach. The study revealed significant differences in hand preference and time taken to reach targets among chronic stroke survivors. The method proved reliable over multiple sessions, with participants finding it easy to use and scoring it highly in terms of user experience.

Additionally, all participants deemed the interaction safe. The team received feedback suggesting that future enhancements could include personalized features, integrating additional behavioral data, and varying the tasks. This innovative approach not only demonstrated consistency and positive user experiences but also highlighted variations in arm use among participants. These insights are vital for healthcare professionals to more accurately monitor and facilitate stroke recovery.

“This work brings together quantitative user-performance data collected using a robot arm, while also motivating the user to provide a representative performance thanks to a socially assistive robot,” said Maja Matarić, study co-author and Chan Soon-Shiong Chair and Distinguished Professor of Computer Science, Neuroscience, and Pediatrics. “This novel combination can serve as a more accurate and more motivating process for stroke patient assessment.”

Related Links:
USC Viterbi 


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Electric Bed
DIXION Intensive Care Bed
Silver Member
X-Ray QA Device
Accu-Gold+ Touch Pro
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.