We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App


31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Injectable, Grain-of-Rice-Sized Glucose Biosensor Continuously Measures Sugar Levels

By HospiMedica International staff writers
Posted on 27 Nov 2023
Print article
Image: The biosensor’s size and injectability enables a less invasive method for monitoring blood glucose (Photo courtesy of Dr. Melissa Grunlan)
Image: The biosensor’s size and injectability enables a less invasive method for monitoring blood glucose (Photo courtesy of Dr. Melissa Grunlan)

The first glucose self-monitoring system, developed in 1970, was a bulky device weighing three pounds and requiring a substantial blood sample, primarily intended for use in physicians' offices. Since then, continuous glucose monitors (CGMs) have evolved significantly, but even modern versions can be cumbersome and their maintenance may discourage users. To overcome these limitations, researchers are now developing a fully injectable CGM, as small as a grain of rice, which can be paired with an external optical reader to measure sugar levels at any time.

A research team at Texas A&M Engineering (College Station, TX, USA) has secured a grant from the National Science Foundation (NSF) to work on this innovative project. The aim is to create a minimally invasive, injectable glucose biosensor and a corresponding wearable device. The sensor, once injected under the skin, is designed to work with a watch-like reader that uses light to determine glucose levels. This reader then transmits the data to a smartphone, allowing the user to easily share information with their healthcare provider.

In addition to the sensor’s unique size and injectability, the optical sensing technology used in the sensor and wearable reader is particularly suited for individuals with darker skin tones, a demographic that has faced challenges with biosensing technologies. The researchers are currently enhancing the sensor's biocompatibility by enclosing its sensing chemistry within a thermoresponsive membrane. This specialized membrane is designed to subtly adapt within the body, swelling and shrinking just enough to prevent cell and protein adhesion, thereby reducing the likelihood of scar tissue formation around the sensor. The team has already patented this membrane technology and is exploring its potential applications in various medical devices, aiming to extend their functional lifespan.

“The membrane could be applied to assorted devices that are prone to adhesion processes in the body,” said co-principal investigator Dr. Melissa Grunlan. “It could be used on maybe a catheter to prevent thrombosis and infection by preventing the accumulation of proteins, cells, and organisms.”

Related Links:
Texas A&M Engineering 

Gold Member
Solid State Kv/Dose Multi-Sensor
Gold Member
12-Channel ECG
Silver Member
Wireless Mobile ECG Recorder
1.5T MRI Scanner

Print article


Surgical Techniques

view channel
Image: Electronic prompt for surgeons may reduce breast cancer overtreatment (Photo courtesy of 123RF)

EHR–Based Nudge Intervention for Surgeons to Reduce Breast Cancer Overtreatment

Sentinel lymph node biopsy (SLNB) is a critical surgical technique used to assess if breast cancer has spread to the underarm lymph nodes, although it's not necessary for all patients. Undergoing SLNB... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more


view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.