We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Injectable, Grain-of-Rice-Sized Glucose Biosensor Continuously Measures Sugar Levels

By HospiMedica International staff writers
Posted on 27 Nov 2023
Print article
Image: The biosensor’s size and injectability enables a less invasive method for monitoring blood glucose (Photo courtesy of Dr. Melissa Grunlan)
Image: The biosensor’s size and injectability enables a less invasive method for monitoring blood glucose (Photo courtesy of Dr. Melissa Grunlan)

The first glucose self-monitoring system, developed in 1970, was a bulky device weighing three pounds and requiring a substantial blood sample, primarily intended for use in physicians' offices. Since then, continuous glucose monitors (CGMs) have evolved significantly, but even modern versions can be cumbersome and their maintenance may discourage users. To overcome these limitations, researchers are now developing a fully injectable CGM, as small as a grain of rice, which can be paired with an external optical reader to measure sugar levels at any time.

A research team at Texas A&M Engineering (College Station, TX, USA) has secured a grant from the National Science Foundation (NSF) to work on this innovative project. The aim is to create a minimally invasive, injectable glucose biosensor and a corresponding wearable device. The sensor, once injected under the skin, is designed to work with a watch-like reader that uses light to determine glucose levels. This reader then transmits the data to a smartphone, allowing the user to easily share information with their healthcare provider.

In addition to the sensor’s unique size and injectability, the optical sensing technology used in the sensor and wearable reader is particularly suited for individuals with darker skin tones, a demographic that has faced challenges with biosensing technologies. The researchers are currently enhancing the sensor's biocompatibility by enclosing its sensing chemistry within a thermoresponsive membrane. This specialized membrane is designed to subtly adapt within the body, swelling and shrinking just enough to prevent cell and protein adhesion, thereby reducing the likelihood of scar tissue formation around the sensor. The team has already patented this membrane technology and is exploring its potential applications in various medical devices, aiming to extend their functional lifespan.

“The membrane could be applied to assorted devices that are prone to adhesion processes in the body,” said co-principal investigator Dr. Melissa Grunlan. “It could be used on maybe a catheter to prevent thrombosis and infection by preventing the accumulation of proteins, cells, and organisms.”

Related Links:
Texas A&M Engineering 

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Digital ECG Machine
ECG – 11D

Print article
Detecto

Channels

Surgical Techniques

view channel
Image: Endovascular thrombectomy has been found to be beneficial for large ischemic stroke (Photo courtesy of 123RF)

Endovascular Thrombectomy Improves Clinical Outcomes for Patients with Large Ischemic Stroke

A new study has found that endovascular thrombectomy (EVT) can improve clinical outcomes for patients with acute ischemic stroke and large cores as compared with medical management. Researchers from Case... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.