We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Machine Learning Model Accurately Predicts Cardiac Arrest in ICU Patients Using ECG Data

By HospiMedica International staff writers
Posted on 28 Nov 2023
Print article
Image: Real-time machine learning model predicts in-hospital cardiac arrest using heart rate variability in ICU (Photo courtesy of 123RF)
Image: Real-time machine learning model predicts in-hospital cardiac arrest using heart rate variability in ICU (Photo courtesy of 123RF)

Cardiac arrest within hospital settings, particularly in Intensive Care Units (ICUs), remains a significant challenge, occurring in 0.5–7.8% of patients upon hospital admission. Despite advancements in critical care, the unpredictable nature and diverse causes of these incidents make prevention difficult. Quick identification and immediate response are crucial for enhancing patient survival rates. Therefore, there's a pressing need for a system that can accurately and continuously predict in-hospital cardiac arrests, allowing for swift actions like early defibrillation and cardiopulmonary resuscitation (CPR).

To address this need, a team of researchers at Seoul National University Hospital (SNUH, Seoul, South Korea) has developed an innovative machine learning (ML) model. This model uniquely utilizes heart rate variability (HRV) measures from ICU patients to predict in-hospital cardiac arrests. Unlike traditional models that depend on comprehensive electronic medical records (EMR) data, this new approach simplifies prediction by relying solely on HRV measures, enabling real-time and continuous patient monitoring.

The study showcased the effectiveness of the light gradient boosting machine (LGBM) model, which excelled in early detection and rapid prediction of in-hospital cardiac arrests. This improvement in prediction accuracy could significantly enhance patient outcomes in clinical settings. The model's strengths include its exclusive use of ECG data for risk prediction, the integration of various HRV measures, and its transparency in explaining risk through these measures.

The exclusive use of ECG data makes this model particularly practical and adaptable to various healthcare environments, as continuous ECG monitoring is a routine procedure in ICUs. This approach contrasts with previous models that required multiple data types, including demographic information, vital signs, and laboratory results. The SNUH team's model, by focusing only on ECG data, presents a more straightforward, feasible solution for predicting cardiac arrests in critical care settings.

Related Links:
SNUH

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
CT Detector
PURE INSIGHT
New
Vascular Closure System
VASCADE

Print article

Channels

Surgical Techniques

view channel
Image: The MagDI System for side-to-side duodeno-ileal anastomosis has been granted FDA De Novo marketing authorization (Photo courtesy of GT Metabolic Solution)

Novel Magnet Compression Anastomosis Technology Ensures Fewer Complications, Bleeds or Leaks

Traditional anastomotic devices like staples or sutures can be challenging to apply in tight spaces during minimally invasive surgeries and may harm bowel tissue by cutting or piercing it, leaving foreign... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
The Atellica VTLi Patient-side Immunoassay Analyzer, a high-sensitivity troponin I test at the bedside, delivers accurate results in just 8 minutes (Photo courtesy of Siemens Healthineers)

New 8-Minute Blood Test to Diagnose or Rule Out Heart Attack Shortens ED Stay

Emergency department overcrowding is a significant global issue that leads to increased mortality and morbidity, with chest pain being one of the most common reasons for hospital admissions.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.