We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Wearable Sensor Accurately Measures Biomarker Concentrations in Sweat Samples

By HospiMedica International staff writers
Posted on 09 Jan 2024
Print article
Image: The two-channel sensor measures biomarker concentration in sweat (Photo courtesy of Penn State)
Image: The two-channel sensor measures biomarker concentration in sweat (Photo courtesy of Penn State)

Skin-applied sensors are emerging as a non-intrusive, affordable method for detecting vital biomarkers in sweat, aiding clinicians in making prompt and precise diagnoses. However, until now, these sensors could only identify the presence of biomarkers and struggled with accurately detecting their concentrations due to the sporadic and unpredictable nature of sweat production. To address this challenge, a team of scientists has introduced a sensor that precisely measures biomarker concentrations in sweat samples.

The research team from Penn State (University Park, PA, USA) designed a dual-channel sensor for capturing sweat. One channel is tasked with measuring the biomarker level, while the other assesses the sweat volume. This sensor employs a dye that reacts to the presence of the biomarker and produces a visible indication, allowing for a simple, equipment-free reading. This feature makes the sensor particularly beneficial in remote settings where advanced technological resources may be scarce. Detecting the concentration of a biomarker is critical for accurate diagnostics. For instance, the team has proposed their sensor's application in diagnosing conditions like cystic fibrosis, typically characterized by elevated chloride levels in the patient.

“The typical course of action to diagnose cystic fibrosis is to induce a local sweat through exercise, but with our sensor, we can detect the chloride concentration in sweat without requiring the patient to exercise, since we can use passive heat-induced sweating with our wearable form of the testing setup,” said Huanyu “Larry” Cheng, the James L. Henderson, Jr. Memorial Associate Professor of Engineering Science and Mechanics at Penn State.

Related Links:
Penn State

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
EEG System
GRAEL LT

Print article
Detecto

Channels

Surgical Techniques

view channel
Image: ROSA Shoulder is a groundbreaking robotic system for anatomic and reverse shoulder arthroplasty (Photo courtesy of Zimmer Biomet)

World's First Robotic Assistant for Shoulder Replacement Surgery Helps Perform Highly Complex Procedures

A key challenge in performing a shoulder replacement is accurate glenoid and humeral placement, which is a critical factor for post-operative function and long-term implant survival. Now, a groundbreaking... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.